O platonizmie w teorii mnogości
Abstrakt
This article points at some (strictly) mathematical methods, which often tend to display not fully conscious treatment of mathematical reality as given, existing and already-present-there. This attitude is prequisite for mathematical research (including set theory), and not merely apsychological add-on, and the methods can be best described as „platonism as method ofenquiry in mathematics” (pl.Metod.) and „platonism as mode of existence of infinity” (pl.Niesk.). Thus, platonism becomes one of the problems internal to mathematics. Identifying pl.Metod. and pl.Niesk. as such, being described here with respect to set theory, is only astarting point in the process of grasping and explaining platonism. This requires phenomenological hermeneutics of mathematics to be conceived (cf. [Z. K.]).
Bibliografia
Aczel P.: Non-well-founded Sets. Stanford: Center for the Study of Language and Information 1988 No. 14.
Ackermann W.: Zur Axiomatik der Mengenlehre. „Mathematische Annales” 131:1956 s. 336-345.
Philosophy of Mathematics: Selected Readings. Ed. P. Benacerraf, H. Putnam. Ed. 2. Cambridge: Cambridge University Press 1987 (reprint).
Handbook of Mathematical Logic. Ed. J.Barwise. Amsterdam: NH 1977; tł. ros.: Moskwa: Nauka 1982.
Benacerraf P.: What Numbers Could Not Be. W: [B,P 1987] s. 272-294.
Bernays P.: Sur le platonisme dans les mathématiques. „L'Enseignement Mathématique” 34:1935 s. 52-69.
Bernays P.: A System of Axiomatic Set Theory. JSL 2:1937 s. 65-77; 6:1941 s. 1-17; 7:1942 s. 65-89, 133-145; 8:1943 s. 89-106; 13:1948 s. 65-79; 19:1954 s. 81-96.
Bernays P.: Mathematische Existenz und Widerspruchsfreiheit. W: Etudes de philosophie des sciences en hommage à F. Gonseth à l'occasion de son 60éme anniversaire. Neuchâtel: Editions du Griffon 1950 s. 11-25.
Bernays P.: Axiomatic Set Theory (with a Historical Introduction by A. A. Fraenkel). Amsterdam: NH 1958. SLFM.
Bernays P.: Zur Frage der Unendlichkeitenschemata in der Axiomatischen Mengenlehre. W: Essays in the Foundations of Mathematics. Ed. Y. Bar-Hillel, Y. Poznanski, E. I. J. Rabin, A. Robinson. Jerusalem: Magnes Press 1961 s. 110-131.
Beth E. W.: L'existence en mathématiques. Paris: Gauthier--Villars 1956. Collection de Logique Mathématique. Série A.
Beth E. W.: The Foundations of Mathematics: A Study in the Philosophy of Sciences. Amsterdam: NH 1959.
Beth E. W.: Mathematical Thought: An Introduction to the Philosophy of Mathematics. Dordrecht: D. Reidel 1965.
Bolzano B.: Paradoxien des Unendlichen. Leipzig: Reclam 1851. Tł. pol. Ł. Pakalska: Paradoksy nieskończoności. Warszawa: PWN 1966.
Boolos G.: The Iterative Conception of Set. W: [B, P 1987] s.486-502.
Boolos G.: O logice drugiego rzędu. W: Fragmenty filozofii analitycznej: filozofia logiki. Tł. C. Cieśliński, A. Sierszulska. Red. J. Woleński. Warszawa: Spacja 1997 s.97-118.
Brouwer L. E. J.: On the Significance of the Principle of Exluded Middle in Mathematics, Especially in Function Theory. W:[Heijenoort 1967] s. 334-345.
Brouwer L. E. J.: On the Domain of Definition of Functions. W: [Heijenoort 1967] s. 446-463.
Brouwer L. E. J.: Intuitionistic Reflections on Formalism. W:[Heijenoort 1967] s. 490-492.
Cantor G.: Ein Beitrag zur Mannigfaltigkeitslehre. „Journal für die reine und angewandte Mathematik (Crelle)” 84:1878 s. 242-258.
Cantor G.: Beiträge zur Begründung der transfiniten Mengenlehre. Tl. 1-2. „Mathematische Annalen” 46:1895 s.481-512; 49:1897 s.207-245.
Carnap R.: The Logicist Foundations of Mathematics. W: [B,P 1987] s. 41-52.
Carnap R.: Empiricism, Semantics, and Ontology. W: tenże. Meaning and Neccessity. Ed. 2. Chicago: University of Chicago Press 1956 s. 205-221.
Curry H.: Outlines of a Formalist Philosophy of Mathematics. Amsterdam: NH 1951. SLFM.
Dedekind R.: Was sind und was sollen die Zahlen. 6. Aufl. Braunschweig: Vieweg 1930. Tł. ang. w: Essays on Theory of Numbers by R. Dedekind. Ed. W. W. Beman. Chicago−London: Open Court 1901. Reprint − New York: Dover 1963.
Proof, Logic and Formalization. Ed. M. Detlefsen. London−New York: Routledge 1992.
Dummett M.: Realism. „Synthese” 52:1982 s. 55-112.
Dummett M.: Realism and Anti-realism. W: tenże. The Seas of Language. Oxford: Oxford University Press 1993 s. 462-468.
Fraenkel A. A., Bar - Hillel Y., Levy A.: Foundations of Set Theory. Amsterdam: NH 1973. SLFM.
Feferman S.: Systems of Predicative Analysis. W: [Hintikka 1969] s.95-127.
Freyd P.: The Axiom of Choice. „Journal of Pure and Applied Algebra” 19:1980 s. 103-125.
Goldblatt R.: Topoi: The Categorial Analysis of Logic. Amsterdam−New York−Oxford: NH 1979.
Gödel K.: Über formal unentscheidbare Sätze der Principia Mathematica und vervandter Systeme. I. „Monatshefte für Mathematik und Physik” 38:1931 s.173-198.
Gödel K.: Russell's Mathematical Logic. W: [B, P 1987] s.447-469.
Gödel K.: What Is Cantor's Continuum Problem? W: [B, P 1987] s.470-485.
Hanf W., Scott D.: Classifying Inaccessible Cardinals. „Notices of the American Mathematical Society. (Providence)” 8:1961.
Heijenoort J. van: From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1951. Cambridge, Mass.: Harvard University Press 1967.
Henkin L.: Some Notes on Nominalism. JSL 18:1953 s.19-29.
Heyting A.: Intuitionism: An Introduction. Ed. 2. Amsterdam: NH 1966. SLFM.
Hilbert D.: On the Infinite. W: [Heijenoort 1967] s.367-392.
Hilbert D., Bernays P.: Grundlagen der Mathematik. Bd. 1. Berlin: Springer 1934.
Philosophy of Mathematics. Ed. J. Hintikka. London: Oxford University Press 1969.
Hintikka J.: Eseje logiczno-filozoficzne. Tł. A.Grobler. Oprac. J. Woleński. Warszawa: PWN 1992.
Hintikka J.: A Revolution in the Foundations of Mathematics? „Synthese” 111:1997 s. 155-170.
Husserl E.: Badania logiczne. Tł. J. Sidorek − T.1. Toruń: Wydawnictwo Comer 1996; T. 2/I. 2/II. Warszawa: Wydawnictwo Naukowe PWN 2000.
Jech T.: Set Theory. New York−London: Academic Press 1978.
Kołmogorow A. N.: On the Principle of Exluded Middle. W: [Heijenoort 1967] s. 414-437.
Kreisel G.: Informal Rigour and Completeness Proofs. W: [Hintikka 1969] s. 78-94.
Kreisel G., Levy A.: Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems. „Zeitschrift für mathematische Logik und Grundlagen der Mathematik” 14:1968 s. 97-191.
Kunen K.: Set Theory: An Introduction to Independence Proofs. Amsterdam: NH 1980.
Problems in the Philosophy of Mathematics. Ed. I. Lakatos. Amsterdam: NH 1967. SLFM.
Lawvere F. W.: An Elementary Theory of the Cathegory of Sets. „Proceedings of the National Academy of Sciences (USA)” 52:1964 s. 1506-1511.
Mac Lane S.: Categories for the Working Mathematician. New York−Heidelberg−Berlin: Springer-Verlag 1971.
Maddy P.: Believing the Axioms. I. JSL 53:1988 s.481-511; Believing the Axioms. II. JSL 53:1988 s. 736-764.
Maddy P.: Realism in Mathematics. New York: Oxford University Press 1990.
Mitchell W.: Boolean Topoi and the Theory of Sets. „Journal of Pure and Applied Algebra” 2:1972 s. 261-274.
Mostowski A.: Recent Results in Set Theory. W: [Lakatos 1967] s. 82-96.
Osius G.: Categorical Set Theory: A Characterization of the Category of Sets. „Journal of Pure and Applied Algebra” 4:1974 s.79-119.
Parsons Ch.: The Impredicativity of Induction. W: [Detlefsen 1992] s. 139-161.
Peirce C. S.: Collected Papers. Vol. 3. Eds. C. Hartshorne, P.Weiss, A. W. Burks. Cambridge, Mass.: Harvard University Press 1933.
Putnam H.: Philosophy of Logic. New York: George Allen and Unwin 1971.
Quine W. V. O.: New Foundations for Mathematical Logic. „American Mathematical Mounthly” 44:1937 s.70-80.
Quine W. V. O.: On Universals. JSL 12:1947 s. 74-84.
Quine W. V. O.: From a Logical Point of View. Cambridge: Harvard University Press 1953.
Quine W. V. O.: On ω-nconsistency and So-called Axiom of Infinity. JSL 18:1953 s. 119-124.
Quine W. V. O.: Existence and Quantification. W: tenże. Ontological Relativity and Other Essays. NewYork: Columbia University Press 1969 s. 91-113.
Ramsey F. P.: The Foundations of Mathematics. „Proceedings of the London Mathematical Society” 25:1925 s.338-384.
Rosser J. B.: On the Consistency of Quine's New Foundation. JSL 4:1939 s. 15-24.
Rosser J. B.: The Axiom of Infinity in Quine's New Foundations. JSL 17:1952 s. 238-242.
Rosser J. B., Wang H.: Non-standard Models for Formal Logics. JSL 15:1950 s.113-129.
Russell B.: Mathematical Logic as Based on the Theory of Types. W: [Heijenoort 1967] s. 150-182.
Scholz H.: Die mathematische Logik und die Methaphysik. „Philosophisches Jahrbuch der Görres Gesellschaft” 51:1938 s. 1-35.
Sieg W.: Hilbert's Programs: 1917-1922. „Bulletin of Symbolic Logic” 5:1999 s. 1-44.
Skolem T.: Über die Nicht-Charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. „Fundamenta Mathematica” 23:1934 s. 150-161.
Skole m T.: Peano's Axioms and Models of Arithmetic. W: Mathematical Interpretations of Formal Systems. Ed. J. E. Fenstad. Amsterdam: NH 1971 s. 1-14.
Tarski A.: O pojęciu wynikania logicznego. W: tenże. Pisma logiczno-filozoficzne. T. 1: Prawda. Warszawa: PWN 1995 s.186-202.
Neumann J. von: An Axiomatization of Set Theory. W: [Heijenoort 1967] s. 393-413.
Vopěnka P., Hájek P.: The Theory of Semisets. Amsterdam−London: NH 1972. SLFM.
Wang H.: A Survey of Mathematical Logic. Amsterdam: NH 1963.
Wang H.: The Concept of Set. W: [B, P 1987] s. 530-570.
Wang H.: To and from Philosophy − Discussions with Gödel and Wittgenstein. „Synthese” 88:1991 s. 229-277.
Weyl H.: Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit 1918; reprint − Berlin−Leipzig: Gruyter 1932.
Weyl H.: Comments on Hilberts Second Lecture on the Foundation of Mathematics. W: [Heijenoort 1967] s.480-484.
Wiener N.: A Simplification of the Logic of Relations. W: [Heijenoort 1967] s. 224-227.
Wójtowicz K.: Realizm mnogościowy. W obronie realistycznej interpretacji matematyki. Warszawa: Wydział Filozofii iSocjologii1999.
Król Z.: Aktualne kontrowersje wokół platonizmu w filozofii matematyki. Praca doktorska napisana na Wydziale Filozofii KUL pod kierunkiem ks. prof. Z. Hajduka. Lublin 2002.
Copyright (c) 2003 Roczniki Filozoficzne
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.