Nielokalność i biokoherencja
Abstrakt
In a series of quantum experiments performed in 1935-1986 a validity of the quantum theory has been tested. The results obtained have changed the viewpoints of physicists and philosophers on the nature of the Universe and physical reality. In particular, they have changed the traditional West view on the relationship between micro- and macro-level, between a part and the wholeness and between the system and its constituents. From the distinguishing quantum experiments a brief description of the Einstein-Podolsky-Rosen paradox, the Bell’s inequality and the Aspect-Dalibard-Roger experiment is made. The results obtained are important for the concept of the bioplasmatic transfer of information in the living systems, developed by Włodzimierz Sedlak. According to the Sedlak’s idea, the bioplasma is a local concept, so it does not take into account the possibility of a faster then light signaling. Because in the living systems the long-range quantum correlations should appear, the concept of bioplasma should be generalized to include the non-local quantum effects. As a consequence – such a dynamic quantum system as bioplasma has to be non-local – all its elements are connected because of quantum correlations, regardless of the distance between them. A model of the biocoherence for the systems described by the Gompertz function is presented. In this approach, the Gompertz function is a solution of the space-like (tachyonic) Horodecki-Feinberg equation with the time-analog of the Morse potential function. It is shown that Gompertzian systems evolve coherently and non-locally in the space. The presented model admits a continuous and instantaneous transfer of “influences” between micro-level represented by the single cell and the macro-level represented by the biosystem (tissue, organ, organism) as a whole. A consequence is the integration of organism and its coherent development on all levels of the bio-existence.
Bibliografia
Aharonov Y., Vaidman L.: Properties of a quantum system during the time interval between two measurements, „Physical Review A” 41 (1990), s. 11-20.
Aspect A., Dalibard J., Roger G.: Experimental test of Bell’s inequalities using time-varying analyzers, „Physical Review Letters” 49 (1982), s. 1804-1807.
Aspect A., Grangier P., Roger G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities, „Physical Review Letters” 49 (1982), s. 91-94.
Aspect A., Grangier P.: Experiments on Einstein-Podolsky-Rosen type correlations between pairs of visible photons, [w:] Quantum concepts in space and time, red. R. Penrose, C.J. Isham, Oxford: University Press 1986.
Bajzer Z., Vuk-Pavlović S.: New dimensions in Gompertzian growth, „Journal of Theoretical Medicine”, 2 (2000), s. 307-315.
Bell J.S.: On the Einstein-Podolsky-Rosen paradox, „Physics” 1 (1964), s. 195-200.
Bell J.S.: On the problem of hidden variables in quantum theory, „Reviews of Modern Physics” 38 (1966), s. 447-452.
Bell J.S.: Speakable and unspeakable in quantum mechanics, Cambridge: University Press 1987.
Berkeley G.: Treatise concerning the principles of human knowledge, 1710.
Bohm D.: The paradox of Einstein, Rosen and Podolsky, [w:] Quantum theory and measurements, red. J.A. Whiler, W.H. Zurek, Princeton: University Press 1983.
Bohm D.: A suggested interpretation of the quantum theory in the terms of “hidden” variables, [w:] Quantum theory and measurements, red. J.A. Wheeler, W.H. Zurek, Princeton: University Press 1983.
Bohm D.: Ukryty porządek, przeł. M. Tempczyk, Warszawa: Pusty Obłok 1988.
Bohm D., Hiley B.: On the intuitive understanding of nonlocality as implied in quantum theory, „Foundations of Physics” 5 (1975), s. 93-109.
Bohr N.: „Atomic physics and human knowledge”, New York: Wiley 1963.
Capra F.: Tao fizyki, przeł. P. Macura, Kraków: Nomos 1994.
Davies P.C.W., Brown J.R.: Duch w atomie. Dyskusja o paradoksach teorii kwantowej, przeł. P. Amsterdamski, Warszawa: Cis 1996.
De Beaquregard C., Werbos P.: Bell’s theorem, quantum theory, and conceptions of universe, red. M. Kafatos, Dordrecht: Kluwer 1989.
De Broglie L.: Tentative d’interprétation causale et nonlinéaire de la mécanique ondulatoire, Paris: Gauthier-Villars 1956.
Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?, „Physical Review” 47 (1935), s. 777-780.
Feinberg G.: Possibility of faster-than-light particles, „Physical Review” 159 (1967), s. 1089-1105.
Freedman S.J., Clauser J.F.: Experimental test of local hidden-variable theories, „Physical Review Letters” 28 (1972), s. 938-941.
Freedman S.J., Clauser J.F.: Experimental test of local hidden-variable theories, [w:] Quantum theory and measurements, red. J.A. Wheeler,W.H. Zurek, Princeton: University Press 1983.
Fhröhlich H.: Long range coherence and energy storage in biological systems, „International Journal of Quantum Chemistry” 2 (1968), s. 641-649.
Gompertz B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, „Philosophical Transactions of the Royal Society, London” 115 (1825), s. 513-585.
Gribbin J.: Schrödinger’s kittens and the search for reality. Solving the quantum mysteries, New York: Back Bay Books 1995.
Heinsenberg W.: Physics and philosophy, New York: Harper Torchbooks 1971.
Ho M-W.: The rainbow and the worm, Singapore: World Scientific 1993.
Horodecki R.: Extended wave description of a massive spin-0 particles, „Il Nuovo Cimento B” 102 (1988), s. 27-32.
Jammer M.: The conceptual development of quantum mechanics, New York: McGraw-Hill 1966.
Josephson B.D., Pallikari-Viras F.: Biological utilisation of quantum nonlocality, „Foundations of Physics” 21 (1991), s. 197-207.
Julsgaard B., Kozhekin A., Polzik E.S.: Experimental long-lived entanglement of two macroscopic objects, „Nature” 413 (2001), s. 400-403.
Matsuno K.: Cell motility as an entangled quantum coherence, „BioSystems” 51 (1999) s. 15-19.
Minn H.: Creation from nothing or anything, „Il Nuovo Cimento B” 105 (1990), s. 901-905.
Molski M.: The dual de Broglie wave, [w:] Advances in Imaging and Electron Physics, 101: 1998, red. P.W. Hawkes, San Diego: Academic Press, s. 144-239.
Molski M., Konarski J.: Coherent states of Gompertzian growth, „Physical Review E” 68 (2003), s. 021916(1-7).
Morse P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels, „Physical Review” 34 (1929), s. 57-64.
Peat D.F.: Superstrings and the search for the theory of everything. Chicago: Contemporary Books 1988.
Penrose R.: The emperor’s new mind, Oxford: University Press 1989.
Rohrlich F.: From paradox to reality, Cambridge: University Press 1987.
Schrödinger E.: Discussion of probability relations between separated systems, „Proceedings of the Cambridge Philosophical Society” 31 (1935), s. 555-563.
Sedlak W.: Bioelektronika, Warszawa: PAX 1979.
Sedlak W.: Elektrostaza i ewolucja organiczna, „Roczniki Filozoficzne” 15 (1967), z. 3, s. 31-58.
Sedlak W.: Wstęp do elektromagnetycznej teorii życia, „Roczniki Filozoficzne” 18 (1970), z. 3, s. 101-126.
Stapp H.P.: S-matrix interpretation of quantum theory, „Physical Review D”, 3 (1971), s. 1303-1320
Thaheld F.: Biological nonlocality and the mind-brain interaction problem: comments on a new empirical approach, „BioSystems” 70 (2003), s. 35-41.
Wheldon T.E.: Mathematical models in cancer research, Adam Hilger: Bristol 1988.
Zhang W-M., Feng D.H., Gilmore R.: Coherent states: theory and some applications, „Reviews of Modern Physics” 62 (1990), s. 867-927.
Copyright (c) 2005 Roczniki Filozoficzne
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.