Ensymes as Nanopocessors: A Bioelectronic Perspective

  • Marian Wnuk

Abstract

A review has been given of the bioelectronic perspective of the investigation concerning enzymes as information processors in living cells. Firstly, the applications of some enzymes in biomolecular electronic devices (e.g. switchers, transistors, thermistors, biosensors, electronic gates, detectors etc.) have been taken into account. Secondly, theories and hypotheses of: living systems as natural computers, neurons and microtubules as biological microprocessors, electromagnetic communications between biostructures, enzymes as molecular automata etc. have been emphasized. In this connection, the electromagnetic theory of life has been mentioned. It is suggested that nanotechnology and nanobiology will be very useful in searching of the nanoprocessor function of enzymes in living cells. (263 refs.).

References

Achimowicz J.: 1982. Quantum solid state mechanisms of biological effects of electromagnetic radiation with emphasis on local superconductivity. Radio Sci. 17 (5S): 23S-27S.

Achimowicz J., Cader A., Pannert L., Wójcik E.: 1977. Quantum cooperative mechanism of enzymatic activity. Phys. Lett. A 60A (4): 383-385.

Adey W. R.: 1989. The extracellular space i energetic hierarchies in electrochemical signaling between cells. W: Charge and Field Effects in Biosystems − 2. (Eds.) M. J. Allen, S. F. Cleary i F. M. Hawkridge, 263-290. Plenum Publ. Corp.

Adey W. R., Sheppard A. R.: 1987. Cell surface ionic phenomena in transmembrane signaling to intracellular enzyme systems. W: Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. (Eds.) M. Blank i E. Findl. 365-387. New York: Plenum Publ. Corp.

Aizawa M.: 1984. Introduction to bioelectronics. (w jap.) Kagaku Gijutsushi MOL 22 (7): 33-36. (CA 101: 64140g).

Proceedings of the International Symposium on Future Electron Devices − Bioelectronic and Molecular Electronic Devices. (Ed.) M. Aizawa, Tokyo: Research and Development Association for Future Electron Devices.

Aizawa M.: 1987. Bioelectronics and enzymes. Bio Ind. 4 (7): 586-591. (CA 107: 232330p).

Aizawa M.: 1988. Hybrid biomaterials with electronic function. (w jap.) Bio Ind. 5 (7): 551-556. (CA 109: 196954a).

Aizawa M.: 1989. Bioelectronics. (w jap.) Kagaku Kogyo 40 (2): 146-152. (CA 110: 169472f).

Aizawa M.: 1990. Bioelectronics of biomolecules and cells. (w jap.) Denki Kagaku oyobi Kogyo Butsuri Kagaku 58 (7): 608-613. (CA 113: 167455r).

Aizawa M.: 1990. Current progress in bioelectronics. (w jap.) Kino Zairyo 10 (4): 5-12. (CA 113: 103248t).

Aizawa M.: 1991. Frontier of bioelectronics. (w jap.) Kagaku to Kogyo (Tokyo) 44 (9): 1472-1475. (CA 115: 273526r).

Aizawa M.: 1991. Prospects of bioelectronics. (w jap.) Bio Ind. 8 (7): 440-444. (CA 116: 37152r).

Aizawa M.: 1992. Development of bioelectronics. (w jap.) Suri Kagaku 344: 5-10. (CA 117:43674z).

Aizawa M., Khan G. F., Shinohara H., Ikariyama Y.: 1992. Molecular wire and interface for bioelectronic molecular devices. AIP Conf. Proc. 262 (Mol. Electr.: Sci. Technol.): 139-147.

Aizawa M., Yabuki S., Shinohara H.: 1989. Biomolecular interface. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong. 269-275. New York: Plenum Press.

Akaike T.: 1987. Bioelectronic polymers. (w jap.) BME 1 (2): 86-93. (CA 107: 12697y).

Akaike T.: 1989. Surface chemistry of bioelectronic materials. Approach to artificial mitochondria and highly functional artificial organ devices. (w jap.) Hyomen Kagaku 10 (2): 102-108. (CA 111: 45091g).

Albe K. R., Butler M. H., Wright B. E.: 1990. Cellular concentrations of enzymes and their substrates. J. Theoret. Biol. 143 (2): 163-195.

Anderson L. E.: 1986. Light/dark modulation of enzyme activity in plants. Adv. Bot. Res. 12: 1-46.

Arney L. H. (Jr.).: 9 May 1989. Pyroelectric enzyme detector. Patent: U.S. US 4,829,003 (Cl. 435-288; C12M1/40) Appl. 901,428, 28 Aug 1986: 7pp.

Molecular Electronics − Science and Technology. (Ed.) A. Aviram. New York: United Engineering Trustees.

Molecular Electronics − Science and Technology. (Ed.) A. Aviram. St. Thomas Virgin Islands, 1991. New York: AIP.

Aviram A.: 1993. A view of the future of molecular electronics. Mol. Cryst. Liquid Cryst. Sci. Technol. Sect. A − Molecular Crystals and Liquid Crystals 234: 13-28.

Ball P.: 1993. Nanosystems − Molecular Machinery, Manufacturing, and Computation, by K. E. Drexler. Nature 362 (6416): 123.

Ball P.: 1993. Nanotechnology − Research and Perspectives, by B. C. Crandall, J. Lewis. Nature 362 (6416): 123.

Bistolfi F.: 1990. The bioelectronic connectional system (BCS): A therapeutic target for non ionizing radiation. Panminerva Med. 32 (1): 10-18.

Bistolfi F.: 1990. A hydrogen-harps model for intracellular communication and its implications for the second genetic code. Panminerva Med. 32: 4-9.

Bistolfi F.: 1991. Biostructures and Radiation. Order Disorder. Torino: Edizioni Minerva Medica.

Bloor D.: 1991. Molecular electronics − Totally organic transistors. Nature 349 (6312): 738-740.

Bloor D.: 1992. Molecular scale electronics: science fiction or science fact? Springer Ser. Solid-State Sci. 107 (Electron. Prop. Polym.): 437-442.

Bone S., Zaba B.: 1992. Bioelectronics. Chichester New York Brisbane Toronto Singapore: John Wiley & Sons.

Borgers M., Verheyen A.: 1985. Enzyme cytochemistry. Int. Rev. Cytol. 95: 163-227.

Bulkley D. H.: 1989. An electromagnetic theory of life. Medical Hypotheses 30: 281 (za Bulkley 1992 s. 305).

Bulkley D. H.: 1991. Micro-structures, electromagnetic micro--mechanisms and the physics of life. Speculations on The Electromagnetics of Life. The Seattle Institute for the Life Sciences, 6519 − 40th. Ave. Seattle. WA 98115, Seattle. (20 pp.) (EM Series 10).

Bulkley D. H.: 1992. Cell chemistry triggered by EM signals. Experimental evidence of basic electromagnetics of life. Speculations on The Electromagnetics of Life. The Seattle Institute for the Life Sciences, 6519 − 40th. Ave. Seattle. WA 98115, Seattle. (8 pp.) (EM Series, 18).

Bulkley D. H.: 1992. The electromagnetic order that inderlies the chemistry of life. Speculations on The Electromagnetics of Life. The Seattle Institute for the Life Sciences, 6519 − 40th. Ave. Seattle. WA 98115, Seattle. (16 pp.) (EM Series, 16).

Bulkley D. H.: 1992. An electromagnetic theory of life − II: Testing. Medical Hypotheses 38: 305-310.

Caras S., Janata J.: 1988. Enzymatically sensitive field effect transistors. W: Immobilized Enzymes and Cells. (Ed.) K. Mosbach, 247-255. Methods in Enzymology, 137. San Diego: Acad. Press Inc.

Cardenas M. L.: 1991. Are the transistory enzyme-enzyme complexes found in vitro also transistory in vivo? If so, are they physiologically important. J. Theoret. Biol. 152 (1): 111-113.

Molecular Electronic Devices. (Ed.) F. L. Carter. New York & Basel: Marcel Dekker, Inc.

Carter F. L.: 1984. Molecular electronics: an opportunity for a biotechnical synergism. W: Nonlinear Electrodynamics in Biological Systems. (Eds.) W. R. Adey i A. F. Lawrence, 243-273. New York: Plenum Press.

Carter F. L.: 1985. Molecular level fabrication techniques and molecular electronic devices. W: Nanometer Struct. Electron., Proc. Int Symp.: (Eds.) Y. Yamamura, T. Fujisawa i S. Namba, 11-24. 1984. Tokyo: Ohmska.

Molecular Electronic Devices II. (Ed.) F. L. Carter, New York & Basel: Marcel Dekker, Inc.

Carter F. L., Siatkowski R. E.: 1989. Molecular electronic devices. W: From Atoms to Polymers: Isoelectronic Analogies. Molecular Structure and Energetics. (Eds.) J. F. Liebman i A. Greenberg, 307-392. New York: VCH Publishers.

Molecular Electronic Devices. (Eds.) F. L. Carter, R. E. Siatkowski i H. Wohltjen, Amsterdam New York Oxford Tokyo: Elsevier Sci. Publ. B. V. (North-Holland).

Caserta G., Cervigni T.: 1974. Piezoelectric theory of enzymic catalysis as inferred from the electromechanochemical principles of bioenergetics. Proc. Natl. Acad. Sci. USA 71 (11): 4421-4424.

Chiabrera A., Di Zitti E., Bisio G. M.: 1991. Molecular information processing and physical constraints on computation. Chemtronics 5: 17-22.

Chiabrera A., DiZitti E., Costa F., Bisio G. M.: 1989. Physical limits of integration and information processing in molecular systems. J. Phys. D: Appl. Phys. 22: 1571-1579.

Chiabrera A., DiZitti E., Ricci D.: 1993. Biological Paradigms of Molecular Electronics. Cytotechnology 11 (Suppl. 1): 77-79.

Chiang H. Y.: 1986. Sensing device of biocomputers. (w chin.) K'o Hsueh Yueh K'an 17 (5): 346-349.

Cole G. H.: A. 1986. Information, cosmology and life. Speculat. Sci. Technol. 9 (4): 259-263.

Conrad M.: 1985. On design principles for a molecular computer. Communications of the ACM 28 (5): 464-480.

Conrad M.: 1988. Quantum mechanics and molecular computing: mutual implications. Int. J. Quantum Chem: Quantum Biol. Symp. 15: 287-301.

Conrad M.: 1989. Force, measurement. and life. W: Newton to Aristotle: Toward a theory of models for living systems. (Eds.) J. L. Casti i A. Karlqvist. 121-200. Birkhaüser Boston, Inc.

Conrad M.: 1989. Physics and biology: Towards a unified model. App. Math. Comput. 32 (2-3): 75-102.

Conrad M.: 1989. Towards the molecular computer factory. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 385-395. New York: Plenum Press.

Conrad M.: 1992. Quantum molecular computing − The self--assembly model. Int. J. Quantum Chem. (Suppl. 19): 125-143.

Conrad M.: 1992. The seed germination model of enzyme catalysis. BioSystems 27 (4): 223-233.

Conrad M.: 1993. Biophysicalism. Appl. Math. Comput. 56 (2-3): 103-109.

Conrad M.: 1993. The fluctuon model of force, life, and computation − A constructive analysis. Appl. Math. Comput. 56 (2-3): 203-259.

Cook N. D.: 1984. The transmission of information in natural systems. J. Theoret. Biol. 108 (3): 349-368.

The Enzyme Catalysis Process: Energetics Mechanism, and Dynamics. (Eds.) A. Cooper, J. L. Houben i L. C. Chien. NATO ASI Ser., Ser. A: Life Sciences, 178. New York: Plenum.

Cooper J. M., Barker J. R., Magill J. V., Monaghan W., Robertson C., Wilkinson D. W., Curtis A. S. G., Moores G. R.: 1993. A Review of Research in Bioelectronics at Glasgow-University. Biosensors & Bioelectronics 8(3-4): R22-R30.

Cope F. W.: 1979. Semiconduction as the mechanism of the cytochrome oxidase reaction. Low activation energy of semiconduction measured for cytochrome oxidase protein. Solid state theory of cytochrome oxidase predicts observed kinetic peculiarities. Physiol. Chem. Phys. 11 (3): 261-262.

Cornish-Bowden A.: 1984. Enzyme specificity: its meaning in the general case. J. Theoret. Biol. 108 (3): 451-457.

Danielsson B.: 1991. Enzyme thermistor devices. Bioprocess Technol. 15 (Biosens. Princ. Appl.): 83-105.

Danielsson B., Mosbach K.: 1988. Enzyme thermistors. W: Immobilized Enzymes and Cells. (Ed.) K. Mosbach, 181-197. Methods in Enzymology, 137. San Diego: Acad. Press Inc.

Day P.: 1990. Future molecular electronics. Chem. Brit. 26 (1): 52-54.

Enzyme Catalysis and Control. (Eds.) M. De Luca, H. Lardy i R. L. Cross, Current Topics in Cellular Regulation, 24. Orlando, Fla.: Academic Press, Inc.

Derosnay J.: 1992. Molecular information processing and molecular electronic devices. Thin Solid Films 210 (1-2): 1-3.

Drexler K. E.: 1987. Molecular machinery and molecular electronic devices. W: Molecular Electronic Devices II. (Ed.) F. L. Carter, 549-572. New York: Dekker.

Eigen M.: 1976. How does information originate? Principles of self-organisation in biology. Ber. Bunsenges. Phys. Chem. 80 (11): 1059-1081. (PA 80: 1063: 32868).

Engelborghs Y.: 1992. Dynamic aspects of the conformational states of tubulin and microtubules. Nanobiology 1 (1): 97-105.

Fahy G. M.: 1993. Molecular nanotechnology. Clin. Chem. 39 (9): 2011-2016.

Fox S. W.: 1974. Origins of biological information and the genetic code. Mol. Cell. Biochem. 3 (2): 129-142.

Mechanisms of Enzymatic Reactions: Stereochemistry. [Proceedings of the 15th Steenbock Symposium], (Ed.) P. A. Frey, Madison, Wis., New York: Elsevier.

Gieletiuk W. I., Kazaczenko W. N.: 1990. Klastiernaja organizacija ionnych kanalow. Moskwa: izd. Nauka.

Gilmanshin R. I.: 1993. Proteins for molecular monoelectronics. W: Molecular Electronics and Molecular Electronic Devices Vol. 2. K. Sienicki, 1-78. Molecular Electronics and Molecular Electronic Devices, 2. Boca Raton: CRC Press Inc.

Gilmanshin R. I., Lazarev P. I.: 1988. Molecular monoelectronics. J. Mol. Electronics 4 (Suppl.): S83-S90.

Gritsenko O. V., Sidelnikov D. I., Simonova A. P., Rambidi N. G.: 1991. Towards a Biomolecular Computer. 3. Information Processing Features of Distributed Biochemical Systems Functioning in the Mode of Dissipative Structure Formation. J. Mol. Electronics 7 (4): 155-166.

Haddon R. C., Lamola A. A.: 1985. The molecular electronic device and the biochip computer: present status. Proc. Natl. Acad. Sci. USA 82 (April): 1874-1878.

Hameroff S. R.: 1987. Ultimate Computing: Biomolecular Consciousness and Nanotechnology. Amsterdam: Elsevier (North-Holland).

Hameroff S. R., Dayhoff J. E., Lahoz-Beltra R., Samsonovich A. V., Rasmussen S.: 1992. Models for molecular computation: conformational automata in the cytoskeleton. Computer (November): 30-39.

Hameroff S. R., Rasmussen S.: 1989. Information processing in microtubules: Biomolecular automata and nanocomputers. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 243-257. New York & London: Plenum Press.

Hameroff S. R., Rasmussen S., Mansson B.: 1989. Molecular automata in microtubules: basic computational logic for the living state? W: Artificial Life, the Santa Fe Institute Studies in the Sciences of Complexity. (Ed.) C. Langton, 521-553. Reading, MA: Addison-Wesley.

Hameroff S. R., Smith S. A., Watt R. C.: 1986. Automaton model of dynamic organization in microtubules. Ann. N. Y. Acad. Sci. 466: 949-952.

Hameroff S. R., Watt R. C.: 1982. Information processing in microtubules. J. Theoret. Biol. 98: 549-561.

Hameroff S. R., Watt R. C.: 1982. Microtubules: biological microprocessors? W: Molecular Electronic Devices. (Ed.) F. L. Carter, 341-356. New York: M. Dekker, Inc.

Bioinformatics. Information Transduction and Processing Systems from Cell to Whole Body. (Eds.) O. Hatase i J. H. Wang, Amsterdam: Elsevier. (CA 112: 114496c).

Heinrich R., Schuster S., Holzhütter H. G.: 1991. Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201 (1): 1-21.

Higazi A. 1985. The exchange of energy between the medium and the active site. J. Theoret. Biol. 117: 609-619.

Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. Hong. New York & London: Plenum Press.

Hong F. T.: 1992. Intelligent materials and intelligent microstructures in photobiology. Nanobiology 1 (1): 39-60.

Hong F. T.: 1992. Do biomolecules process information differently than synthetic organic molecules. BioSystems 27 (4): 189-194.

Hopfield J. J.: 1991. Physics, computation, and biology. Springer Proc. Phys. 57 (Evol. Trends Phys. Sci.): 217-224.

Hotani H., Laboz-Beltra R., Combs B., Hameroff S., Rasmussen S.: 1992. Microtubule dynamics, liposomes and artificial cells: in vitro observation and cellular automata simulation of microtubule assembly/disassembly and membrane morphogenesis. Nanobiology 1 (1): 61-74.

Hug D. H., Hunter J. K.: 1991. Photomodulation of enzymes. J. Photochem. Photobiol., B-Biol. 10 (1-2): 3-22.

Huth G. C., Bond J. D., Tove P. A.: 1984. Nonlinear tunneling barriers at high frequencies and their possible logic processing function in biological membrane. W: Nonlinear Electrodynamics in Biological Systems. (Eds.). W. R. Adey i A. F. Lawrence, 227-241. New York: Plenum Press.

Iguchi N., Ri E., Kimura H.: 4 October 1991. Hemoprotein membranes with memory and external stimulant-induced switch action for biochips. Patent: Jpn. Kokai Tokkyo Koho JP 03,225,872 [91,225,872] (Cl. H01L29/28) Appl. 90/19,217, 31 Jan 1990: 5pp. (CA 116: 55080v).

Isoda S.: 1991. Flavin-porphyrin molecular hetrojunction devices. Bioelectronic devices based on biological electron transfer. (w jap.) Bio Ind. 8 (7): 465-477. (CA 116: 37156v).

Biochemical Elements and Bio-Computer: Technical Problems and Research Strategy. (w jap.) (Ed.) T. Kaminuma, 329 pp. Tokyo: Science Forum Inc.: Tokyo, Japan. (CA 105: 57433r).

Kamiyama T., Isoda S., Ogura A.: 27 January 1988. A monolithic circuit device using biological materials. Patent: Jpn. Kokai Tokkyo Koho JP 63 19,853 [88 19,853] (Cl. H01 L29/28) Appl. 86/164,186, 11 Jul 1986: 6pp. (CA 109: 30997s).

Kampis G., Csanyi V.: 1991. Life, self-reproduction and information − beyond the machine metaphor. J. Theoret. Biol. 148 (1): 17-32.

Karube I.: 1992. Current technical trends in bioelectronics. (w. jap.) Denshi Zairyo 31 (6): 63-68. (CA 117: 247864w).

Keyes R. W.: 1988. Physical limits in information processing. W: Advances in Electronics and Electron Physics. (Ed.) P. W. Hawkes, 159-214. San Diego: Academic Press Inc.

Kohn M., Bedrosian S.: 1985. Information flow and complexity in large-scale metabolic systems. W: Information Processing in Biological Systems (Eds.) S. L. Mintz i A. Perlmutter, 55-67. New York: Plenum Press.

Koruga D.: 1989. Microtubules: possible application to computer technologies. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 231-241. New York: Plenum Press.

Koruga D.: 1992. Neuromolecular computing. Nanobiology 1: 5-24.

Koruga D., Simic-Krstic J.: 1990. Semiconductor and crystal symmetry assessment of microtubule proteins as molecular machines. J. Mol. Electronics 6 (3): 167-173.

Kotyk A.: 1992. Biomembranes as Catalysts of mass, energy and information transfer. J. Radioanal. Nucl. Chem. − 163 (1): 37-45.

Koyano T., Saito M., Kato M., Umibe K., Miyamoto H.: 25 July 1991. Manufacture of biochips for use in biocomputers for information processing. Patent: Jpn. Kokai Tokkyo Koho JP 03,171,686 [91, 171686] (Cl. H0 1L49/00) Appl. 89/310,444, 29 Nov 1989: 8pp. (CA 115: 275226s).

Koyano T., Saito M., Miyamoto H., Umibe K., Kato M.: 10 January 1992. Bioelement having biological photoinformation processing function for use in computer. Patent: Jpn. KokaiTokkyo Koho JP 04 06,446 [92 06,446] (Cl. G01N21/80) Appl. 90/107,352, 25 Apr. 1990: 5pp. (CA 116: 190666f).

Kuhn H.: 1976. Evolution of biological information. (w niem.) Ber. Bunsenges. Phys. Chem. 80 (11): 1209-1223. (CA 86: 38650a).

Kuhn H.: 1987. Self-organizing molecular electronic devices? W: Molecular Electronic Devices II. (Ed.) F. L. Carter, 411-426. New York: M. Dekker, Inc.

Küppers B. O.: 1991. Geneza informacji biologicznej. Filozoficzne problemy powstania życia. Warszawa: PWN (tłum. z j. niem.: Der Ursprung biologischer Information. Zur Naturphilosophie der Lebensentstehung, R. Piper Gmbh & Co. KG, München 1986).

Kuriyama T., Kawana T., Kawana Y.: 6 May 1986. Biosensor transistors. Patent: Jpn. Kokai Tokkyo Koho JP 61 88,135 [86, 88,135] (Cl. G01 N27/30) Appl. 84/209,165, 05 Oct 1984: 4pp. (CA 105: 186707a).

Kuriyama T., Kimura J., Kawana Y.: 6 May 1986. Biosensor transistors. Patent: Jpn. Kokai Tokkyo Koho JP 61 88,136 [86,88,136] (Cl. G01 N27/30) Appl. 84/209,166. 05 Oct 1984: 4pp. (CA 105: 186707a).

Kurzyński M.: 1994. Protein-machine model of enzymatic catalysis. Biophys. Chem. (preprint).

Lahoz-Beltra R., Hameroff S. R., Dayhoff J. E.: 1993. Cytoskeletal logic: A model for molecular computation via Boolean operations in microtubules and microtubule-associated Proteins. BioSystems 29 (1): 1-23.

Lambert G. R.: 1984. Enzymic editing mechanisms and the origin of biological information transfer. J. Theoret. Biol. 107 (3): 387-403.

Latawiec A. M.: 1982. Pojęcie informacji biologicznej. W: Z zagadnień filozofii przyrodoznawstwa i filozofii przyrody. (Red.) K. Kłósak, M. Lubański i S. W. Ślaga, 213-229. Warszawa: Akademia Teologii Katolickiej.

Latawiec A. M.: 1983. Koncepcja informacji biologicznej. W: Z zagadnień filozofii przyrodoznawstwa i filozofii przyrody. (Red.) K. Kłósak, M. Lubański i S. W. Ślaga, 151-259. Warszawa: Akademia Teologii Katolickiej.

Lawrence A. F.: 1987. How do we talk to molecular level circuitry? W: Molecular Electronic Devices II. (Ed.) F. L. Carter, 253-268. New York: M. Dekker, Inc.

Lawrence A. F., Birge R. R.: 1989. Mathematical problems arising in molecular electronics: Global gometry and dynamics of the double-well potential. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 407-424. New York: Plenum Press.

Molecular Electronics: Materials and Methods. (Ed.) P. I. Lazarev, Topics in Molecular Organization and Engineering, 7. Dordrecht, Neth.: Kluwer.

Structure, Biogenesis, and Assembly of Energy Transducing Enzyme Systems. (Ed.) C. P. Lee, Current Topics in Bioenergetics, 15. San Diego: Academic.

Lenartowicz P.: 1986. Elementy filozofii zjawiska biologicznego. Kraków: Wydawnictwo Apostolstwa Modlitwy.

Liberman J. A.: 1972. Molekularnaja wyczislitielnaja maszina kletki (MWM). 1. Obszczije soobrazenija i gipotiezy. Biofizika 17 (5): 932-943.

Liberman J. A.: 1974. Molekularnaja wyczislitielnaja maszina kletki (MWM). IV. «Ciena diejstwija» − wieliczina, charaktierizujuszczaja «trudnost'» rieszenija zadaczi dla wyczislitielnogo ustroistwa. Biofizika 19 (1): 148-150.

Liberman J. A.: 1975. Molekularnaja wyczislitielnaja maszina kletki. VII. Biofizika kletki i riealisticzeskaja ili informacionnaja fizika (I). Biofizika 20 (3): 432-436.

Liberman J. A.: 1975. Molekularnaja wyczislitielnaja maszina kletki (MWM). VIII. Wozmoznaja konstrukcija molekularnoj pamiatki w biologiczeskich miembranach i princip minimalnych zatrat swobodnoj eniergii na zapis informacii. Biofizika 20 (4): 624-627.

Liberman J. A.: 1983. Priedielnyj molekularnyj kwantowyj riegulator. Biofizika 28 (1): 183-185.

Liberman J. A.: 1989. Molekularnyje kwantowyje kompjutiery. Biofizika 34 (5): 913-925.

Liberman J. A., Szklowskij N. J.: 1973. Molekularnaja wyczislitielnaja maszina kletki (MWM). III. O wozmoznosti konstrukcjii «idiealnogo» wyczislitielnogo ustrojstwa w zidkoj miembranie. Biofizika 18 (6): 1121.

Mechanistic Principles of Enzyme Activity. (Eds.) J. F. Liebman i A. Greenberg, Molecular Structures and Energetics, 9. Weinheim, Fed. Rep. Ger.: VCH.

Linchung P. J., Rajagopal A. K.: 1994. Electronic excitations in nanoscale systems with helical symmetry. J. of Phys.-Condensed Matter 6 (20): 3697-3706.

Electronic Conduction and Mechanoelectrical Transduction in Biological Materials. (Ed.) B. Lipiński. New York: M. Dekker.

Lipscomb W. N.: 1981. How do enzymes work? Colloq. Ges. Biol. Chem. 32 (Struct. Funct. Aspects Enzyme Catal.): 17-23.

Lipscomb W. N.: 1982. Acceleration of reactions by enzymes. Acc. Chem. Res. 15: 232-238.

Lotan N., Ashkenazi G., Tuchman S., Nehamkin S., Sideman S.: 1993. Molecular bio-electronics biomaterials. Mol. Cryst. Liquid Cryst. Sci. Technol. Sect. A − Molecular Crystals and Liquid Crystals 234: 635-644.

Lumry R., Gregory R. B.: 1986. Free-energy management in protein reactions: concepts, complications, and compensation. W: The Fluctuating Enzyme. (Ed.) G. R. Welch, 1-190. New York: J. Wiley & Sons.

Luscombe J. H.: 1992. Nanoelectronic modeling. W: Nanostruct. Mesosc. Syst., Proc. Int. Symp. (Eds.) W. P. Kirk i M. A. Reed, 357-367. 1991. San Diego: Academic.

Maddox J.: 1987. Quantum information storage. Nature 327 (14 May): 97.

Mahler G., Obermayer K.: 1987. Towards the quantum computer: information processing with single electrons. W: International Symposium on Synergetics: Computational Systems. (Ed.) H. Haken, Elmau, Springer. (preprint).

Marijuan P. C.: 1991. Enzymes and theoretical biology: sketch of an informational perspective of the cell. BioSystems 25 (4): 259-274.

Marijuan P. C., Westley J.: 1992. Enzymes as molecular automata − A reflection on some numerical and philosophical aspects of the hypothesis. BioSystems 27 (2): 97-113.

Modern Bioelectricity. (Ed.) A. A. Marino. New York & Basel: Marcel Dekker, Inc.

Matsumoto G., Iijima T.: 1989. Neurons as microprocessors with a kind of memory function. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 213-222. New York: Plenum Press.

Matsuno K.: 1984. Is matter inanimate?: Protobiological information from within. Origins Life 14 (1-4): 489-496.

Maurel M. C.: 1991. Primitive evolution: early information transfer and catalysis by purines. Lect. Notes Phys. 390 (Bioastronomy): 93-98.

May V.: 1989. Bioelectronics and electron transfer in proteins. Stud. Biophys. 132 (1-2): 35-46.

McAlear J. H., Wehrung J. M.: 1987. The biochip: now, 2,000 A.D., and beyond. W: Molecular Electronic Devices II. (Ed.) F. L. Carter, 623-633. New York: M. Dekker, Inc.

McDonald J. A.: 1993. Neurocomputing − Bridging the real world and the world of computers. Biosensors & Bioelectronics 8 (5): R21-R25.

Moriizumi T.: 1987. Bioelectronics. (Baioerekutoronikkusu). (w jap.) Tokyo: Kogyo Chosakai Publishing Co., Ltd. (CA 106: 94510y).

Munn R. W.: 1992. Molecules as electronic components. BioSystems 27 (4): 207-211.

Nagayama K.: 1992. Protein array: an emergent technology from biosystems. Nanobiology 1 (1): 25-37.

Nicolis J. S.: 1987. Chaotic dynamics in biological information processing: a heuristic outline. Nuovo Cimento D − Cond. Matt. At. 9 (11): 1359-1388.

Niki K.: 1991. Electronic functions of cytochrome c3 for electronic devices. (w jap.) Kino Zairyo 11 (7): 5-17. (CA 116: 53746t).

Ogura A., Isoda S.: 27 January 1988. A bioelectric device with an electron-transporting protein. Patent: Jpn. Kokai Tokkyo Koho JP 63 19,855 [88 19,855] (Cl. H01 L29/28) Appl. 86/164,188, 11 Jul 1986: 17pp. (CA 109: 30996r).

Ogura A., Isoda S.: 27 January 1988. A rectifying or switching bioelectric device with an electron-transporting protein. Patent: Jpn. Kokai Tokkyo Koho JP 63 19,857 [88, 19,857] (Cl. H01 L29/28) Appl. 86/164,190, 11 Jul 1986: 4pp. (CA 109: 30994p).

Ogura A., Kamiyama T., Isoda S.: 27 January 1988. A bioelectric device with an electron-transporting protein. Patent: Jpn. Kokai Tokkyo Koho JP 63 19,856 [88, 19,856] (Cl. H01 L29/28) Appl. 86/164,189, 11 Jul 1986: 13pp. (CA 109: 30995q).

Okamoto M., Sakai T., Hayashi K.: 1987. Switching mechanism of a cyclic enzyme system: role as a 'chemical diode'. BioSystems 21 (1): 1-11.

Okamoto M., Wada M.: 1984. Biochips (biochemical electronic devices). (w jap.) Kagaku to Kogyo (Tokyo) 37 (3): 170-172.

Enzyme Mechanisms. (Eds.) M. I. Page i A. Wiliams, London, UK: Royal Society of Chemistry.

Paton R. C.: 1993. Some computational models at the cellular level. BioSystems 29 (2-3): 63-75.

Pattee H. H.: 1987. Instabilities and information in biological self--organization. W: Self-Organizing Systems. The Emergence of Order. (Eds.) F. E. Yates, A. Garfinkel, D. O. Walter i G. B. Yates. 325-338. New York: Plenum Press.

Phadke R. S., Sonawat H. M., Govil G.: 1988. Biomolecular electronics using coenzymes immobilized on solid supports. J. Mol. Electronics 4 (Suppl.): S67-S74.

Phadke R. S., Sonawat H. M., Govil G.: 7 September 1991. Preparation of solid support containing immobilized coenzymes in biomolecular electronics or biobatteries. Patent: Indian IN 169,121 (Cl. C12N11/00) Appl. 87/DE222 (17 Mar 1987): 18 pp. (CA 119: 176671j).

Electromagnetic Bio-Information. Proceedings of the Symposium, (Eds.) F. A. Popp, G. Becker, H. L. König i W. Peschka. Marburg 5 September 1977. München: Urban & Schwarzenberg.

Powers L.: 1989. Biomolecular electronics: Structure − function relationship. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 115-123. New York: Plenum Press.

Pratt J. M.: 1986. Metalloenzymes as molecular switches: the role of conformation changes in controlling activity. J. Inorg. Biochem. 28 (2-3): 145-153.

Rachimow M. W.: 1986. Biologiczeskije mikroustrojstwa s fiermientnym usilenijem. Biofizika 31 (4): 704-710.

Rambidi N. G.: 1992. Towards a biomolecular computer. BioSystems 27 (4): 219-222.

Rambidi N. G.: 1993. Non-discrete biomolecular computing − An approach to computational complexity. BioSystems 31 (1): 3-13.

Rambidi N. G., Chernavskii D. S.: 1991. Towards a biomolecular computer. 2. Information-processing and computing devices based on biochemical non-linear dynamic systems. J. Mol. Electronics 7 (3): 115-125.

Rambidi N. G., Chernavskii D. S., Krinsky V. I.: 1993. Information processing and computing devices based on biomolecular nonlinear dynamic systems. W: Molecular Electronics and Molecular Electronic Devices. Vol 1. K. Sienicki, 85-153. Molecular Electronics and Molecular Electronic Devices, 1. Boca Raton: CRC Press Inc.

Rambidi N. G., Chernavskii D. S., Sandler Y. M.: 1991. Towards a biomolecular computer. 1. Ways, means, objectives. J. Mol. Electronics 7 (3): 105-114.

Randall J. N., Reed M. A., Frazier G. A.: 1989. Nanoelectronics: fanciful physics or real devices? J. Vac. Sci. Technol., B, 7 (6): 1398-1404.

Rasmussen S., Karampurwala H., Vaidyanath R., Jensen K. S., Hameroff S.: 1990. Computational connectionism within neurons: A model of cytoskeletal automata subserving neural networks. Physica D 42: 428-449.

Ricard J.: 1985. Organized polymeric enzyme systems: catalytic properties. W: Organized Multienzyme Systems. (Ed.) G. R. Welch, 177-240. Orlando, Fla.: Academic Press.

Ricard J.: 1989. Modulation of enzyme catalysis in organized biological systems: a physico-chemical approach. Catal. Today 5 (3): 275-384.

Robinson B. H., Seeman N. C.: 1987. The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng. 1 (4): 295-300.

Saito M., Koyano T., Miyamoto H., Umibe K., Kato M.: 20 February 1992. Manufacture of biochips for computer. Patent: Jpn. Kokai Tokkyo Koho JP 04 52,527 [9252,527] (Cl. G01Jl/00) Appl. 90/161, 890, 20 Jun 1990: 6pp. (CA 117: 22864w).

Saito M., Umibe K., Kato M., Miyamoto H., Koyano T.: 15 July 1991. Manufacture of biochips for computer. Patent: Jpn. Kokai Tokkyo Koho JP 03,163,887 [91,163,887] (Cl. H01 L49/00) Appl. 89/303,547, 22 Nov 1989: 9pp. (CA 116: 210708b).

Samogyi B., Damjanovich S.: 1986. A microenvironmental approach to enzyme dynamics. W: The Fluctuating Enzyme. (Ed.) G. R. Welch, 341-368. New York: J. Wiley & Sons.

Sasabe H.: 1988. Elucidation of biological function and its application to new biomaterials. (w jap.) Zairyo Kagaku 25 (2): 69-76. (CA 110: 160264g).

Sasabe H., Furuno T., Otomo J., Sato A., Nagamune T., Ulmer K. M.: 1991. Control of two-dimensional array of protein molecules for bioelectronics. New. J. Chem. 15 (2-3): 149-152.

Satoh I.: 1987. New development of enzyme thermistors. (w jap.) Kagaku Kogyo 38 (11): 933-939. (CA 108: 90257q).

Schmid R. D., Karube I.: 1988. Biosensors and bioelectronics. W: Biotechnology (Eds.) H. J. Rehm i G. Reed, 317-365. Weinheim, Fed. Rep. Ger.: VCH.

Schneider T. D.: 1991. Theory of molecular machines. 1. Channel capacity of molecular machines. J. Theoret. Biol. 148 (1): 83-123.

Schneider T. D.: 1991. Theory of molecular machines. 2. Energy dissipation from molecular machines. J. Theoret. Biol. 148 (1): 125-137.

Schuster S., Heinrich R.: 1987. Time hierarchy in enzymatic reaction chains resulting from optimality principles. J. Theoret. Biol. 129 (2): 189-209.

Sedlak W.: 1969. ABC elektromagnetycznej teorii życia. Kosmos. Seria A: Biologia 18 (2(97)): 155-174.

Sedlak W.: 1970. Wstęp do elektromagnetycznej teorii życia. Roczniki Filozoficzne 18, z. 3 (Filozofia Przyrody): 101-126.

Sedlak W.: 1977. The fundamentals of quantum information in living systems. W: Third International Congress on Psychotronic Research, 439-442. Tokyo.

Sedlak W.: 1977. Piezoelektryczność związków organicznych i kwantowo-akustyczne podstawy informacji biologicznej. Roczniki Filozoficzne 25, z. 3 (Filozofia Przyrody): 149-170.

Sedlak W.: 1979. Bioelektronika 1967-1977. Warszawa: Instytut Wydawniczy PAX.

Sedlak W.: 1984. Postępy fizyki życia. Warszawa: Inst. Wyd. PAX.

Sedlak W.: 1988. Wprowadzenie w bioelektronikę. Wrocław−Warszawa−Kraków−Gdańsk−Łódź: Zakład Narodowy im. Ossolińskich.

Bioelektronika. Materiały VI Krajowego Sympozjum. (Red.) W. Sedlak, J. Zon i M. Wnuk, Katolicki Uniwersytet Lubelski, 20-21 listopada 1987. Lublin: Redakcja Wydawnictw KUL.

Shimomura M.: 1991. Electronic communications between molecular associates and enzymes. (w jap.) Kagaku (Kyoto) 46 (8): 571.

Shinagawa Y.: 1987. Biocomputer and molecular electronic devices. (w jap.) Tanpakushitsu Kakusan Koso 32 (4): 318-326. (CA 106: 225134d).

Shinagawa Y.: 1987. Biocomputer. (Baiokonpyuta). (w jap.) Tokyo: Kyoritsu Shuppan Co., Ltd. (CA 106: 116114b).

Molecular Electronics and Molecular Electronic Devices. (Ed.) K. Sienicki, Boca Raton Ann Arbor London Tokyo: CRC Press.

The Enzymes. (Eds.) D. S. Sigman i P. D. Bouer, San Diego, Calif.: Academic Press, Inc.

Snita D., Marek M.: 1989. Electromagnetic field in enzyme reaction systems and pH effect. Sb. Vys. Sk. Chem. − Technol. Praze, K: Chem. Inz. 22: 139-180. (CA 116: 126944t).

Somogyi B., Damjanovich S.: 1986. A microenvironmental approach to enzyme dynamics. W: The Fluctuating Enzyme. (Ed.) G. R. Welch, 341-368. New York: John Wiley & Sons, Inc.

Somogyi B., Welch G. R., Damjanovich S.: 1984. The dynamic base of energy transduction in enzymes. Biochim. Biophys. Acta 768 (2): 81-112.

Srivastava D. K., Bernhard S. A.: 1986. Enzyme--enzyme interactions and the regulation of metabolic reaction pathways. Curr. Top. Cell. Regul. 28: 1-68.

Sucheta A., Ackrell B. A. C., Cochran B., Armstrong F. A.: 1992. Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature 356 (6367): 361-362.

Suzuki T., Yamamoto K., Tanaka Y., Daiko T., Akaike T.: 1989. Design of bioelectronic device using cytochrome c − mediation of electron transfer by cytochrome c immobilized on electrode. (w jap.) Maku 14 (5): 319-328. (CA 112: 154542w).

Szent-Györgyi A.: 1968. Bioelectronics. A Study in Regulations, Defense, and Cancer. New York London: Academic Press.

Tan M. Q.: 1988. Prospects for biochips. (w chin.) Shengwu Gongcheng Xuebao 4 (2): 87-90.

Tanaka K., Sato T., Yamabe T., Okahara K., Uchida K., Yumura M., Niino H., Ohshima S., Kuriki Y., Yase K., Ikazaki F.: 1994. Electronic Properties of Carbon Nanotube. Chem. Phys. Lett. 223 (1-2): 65-68.

Tapuchi E.: 1991. Molecular electronics − a new interdisciplinary field of research. Interdiscipl. Sci. Rev. 16 (1): 45-60.

Tien H. T.: 1988. Bilayer lipid membranes (BLM) in aqueous media: biomolecular electronic devices. Biop. Membr. Transp. 9 (2): 171-241.

Tien H. T., Salamon Z., Kutnik J., Krysiński P., Kotowski J., Ledermann D., Jonas T.: 1988. Bilayer lipid membranes (BLM): an experimental system for biomolecular electronic device development. J. Mol. Electronics 4 (Supp.): S1-S30.

Tien H. T., Salamon Z., Kutnik J., Krysiński P., Kotowski J., Lederman D., Janas T.: 1988. Bilayer lipid membranes (BLM): Biomolecular electronic devices. W: Ninth School on Biophysics of Membrane Transport, School Proceedings. (Eds.) J. Kuczera i S. Przestalski, 171-241. Polanica Zdrój, Poland, 4 May 1988. Wrocław, Pol.: Agricultural University of Wrocław.

Tien H. T., Salamon Z., Ottova A.: 1990. Lipid bilayer-based sensors and biomolecular electronics. Biophys. Membr. Transp. 10th (2): 157-193.

Tien H. T., Salamon Z., Ottova A.: 1991. Lipid bilayer-based sensors and biomolecular electronics. Crit. Rev. Biomed. Engn. 18 (5): 323-340.

Tokuda T., Isoda S.: 27 January 1988. A protein static memory device. Patent: Jpn. Kokai Tokkyo Koho JP 63 19,850 [88, 19,850] (Cl. H01L29/28) Appl. 86/164, 183, 11 Jul 1986: 6pp. (CA 109: 30993n).

Tomizawa O., Isoda S.: 27 January 1988. A protein memory circuit. Patent: Jpn. Kokai Tokkyo Koho JP 63 19,849 [88, 19,849] (Cl. H01 L29/28) Appl. 86/164,182, 11 Jul 1986: 5pp. (CA 109: 30998t).

Traut T. W.: 1986. What determines the size of enzymes? Trends Biochem. Sci. (Pers. Ed.) 11 (12): 508.

Treumann R. A.: 1993. Evolution of the Information in the Universe. Astrophys. Space Sci. 201 (1): 135-147.

Triffet T., Green H. S.: 1988. Information transfer by electromagnetic waves in cortex layers. J. Theoret. Biol. 131 (2): 199-222.

Trinczer K. S.: 1964. Biologija i informacija. Moskwa: izd. Nauka.

Tsong T. Y.: 1989. Deciphering the language of cells. Trends Biochem. Sci.) Pers. Ed.) 14 (3): 89-92.

Tsong T.: 1989. Electroconformational coupling: A fundamental process of biomolecular electronics for signal transductions. W: Molecular Electronics. Biosensors and Biocomputers. (Ed.) F. T. Hong, 83-95. New York: Plenum Press.

Tsong T. Y., Astumian R. D.: 1988. Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields. Annu. Rev. Physiol. 50: 273-290.

Ulmer K. M.: 1982. Biological assembly of molecular ultracircuits. W: Molecular Electronic Devices. (Ed.) F. L. Carter, 213-222. New York: M. Dekker, Inc.

Valleton J. M.: 1988. Biophysico-chemical systems and information processing. J. Mol. Electronics. 4 (Suppl.): S75-S83.

Valleton J. M.: 1990. Information processing in biomolecule--based biomimetic systems. From macroscopic to nanoscopic scale. React. Polym. 12 (2): 109-131.

Valleton J. M., Sanfeld A.: 1987. The organizing role of electric fields in structured enzyme media. J. Non-Equilibr. Thermodyn. 12 (2): 137-145.

VanBrunt J.: 1985. Biochips: the ultimate computer. Bio/Technology 3 (3): 209, 211-215. (CA 102: 200680h).

VanRossum M.: 1993. From microelectronics to nanoelectronics - New technology requirements. Materials Sci. Engn. B − Solid State Materials for Advanced Technology 20 (1-2): 128-133.

Vassilev P., Kanazirska M.: 1985. The role of cytoskeleton in the mechanisms of electric field effects and information transfer in cellular systems. Medical Hypotheses 16: 93-96.

Vincent L. M.: 1993. Theory of data transferal − Principles of a new approach to the information concept. Acta Biotheoret. 41 (1-2): 139-145.

Wajncwajg M. N., Liberman J. A.: 1973. Molekularnaja wyczislitielnaja maszina. II. Formalnoje opisanije (sistiema opieratorow). Biofizika 18 (5): 939-941.

Wangermann G.: 1989. Topical aspects of bioelectronics. Stud. Biophys. 132 (1-2): 9-16.

Proceedings of the CMEA Conference on Bioelectronics. (Eds.) G. Wangermann i G. R. Ivanitzki. Frankfurt, GDR, Nov. 28 − Dec. 3, 1988. Berlin: Akademie-Verlag.

Washburn S.: 1992. Electronics − single atoms as transistors. Nature 357 (6375): 199-200.

Weisbuch G.: 1986. Networks of automata and biological organization. J. Theoret. Biol. 121 (3): 255-268.

Welch G. R.: 1977. On the role of organized multienzyme systems in cellular metabolism: A general synthesis. Prog. Biophys. Molec. Biol. 32: 103-191.

Organized Multienzyme Systems: Catalytic Properties. (Ed.) G. R. Welch, Orlando, Fla.: Academic Press, Inc.

Welch G. R.: 1993. Bioenergetics and the cellular microenvironment. Pure Appl. Chem. 65 (9): 1907-1914.

Welch G. R., Berry M. N.: 1983. Long-range energy continua in the living cell: Protochemical considerations. W: Coherent Excitations in Biological Systems. (Eds.) H. Fröhlich i F. Kremer, 95-116. Berlin: Springer-Verlag.

Welch G. R., Berry M. N.: 1985. Long-range energy continua and the coordination of multienzyme sequences in vivo. W: Organized Multienzyme Systems: Catalytic Properties (Ed.) G. R. Welch, 419-447. Orlando, Fla.: Academic Press.

Welch G. R., Kell D. B.: 1986. Not just catalysts − molecular machines in bioenergetics. W: The Fluctuating Enzyme. (Ed.) G. R. Welch, 451-492. New York: J. Wiley & Sons.

Werbos P. J.: 1992. The cytoskeleton: why it may be crucial to human learning and to neurocontrol. Nanobiology 1 (1): 75-95.

Westerhoff H. V., Kamp F., Tsong T. Y., Astumian R. D.: 1987. Interactions between enzyme catalysis and non stationary electric fields. W: Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. (Eds.) M. Blank i E. Findl, 203-215. New York: Plenum Publ. Corp.

Westerhoff H. V., Tsong T. Y., Chock P. B., Chen V., Astumian R. D.: 1986. How enzymes can capture and transmit free energy from an oscillating electric field. Proc. Nat. Acad. Sci. USA 83 (13): 4734-4738.

Wicken J. S.: 1978. Information transformations in molecular evolution. J. Theoret. Biol. 72 (1): 191-204. (BA 66 (8): 45532).

Williams R. J. P.: 1993. Are enzymes mechanical devices. Trends Biochem. Sci. 18 (4): 115-117.

Winquist F., Danielsson B., Lundstrom I., Mosbach K.: 1988. Use of hydrogen-sensitive and ammonia-sensitive semiconductor structures in analytical biochemistry: enzyme transistors. W: Immobilized Enzymes and Cells. (Ed.) K. Mosbach, 232-247. Methods in Enzymology, 137. San Diego: Acad. Press Inc.

Wnuk M.: 1987-1988. Bioelectronic aspect of enzymatic catalysis. Roczniki Filozoficzne 35-36, z. 3 (Filozofia Przyrody): 119-124.

Wnuk M.: 1988. Możliwość udziału plazmy fizycznej w katalizie enzymatycznej. W: Bioplazma. Materiały II Krajowej Konferencji nt. bioplazmy. (Red.) W. Sedlak, J. Zon i M. Wnuk, 97-112. Katolicki Uniwersytet Lubelski, 18 grudnia 1985. Lublin: Redakcja Wydawnictw KUL.

Wnuk M.: 1990. Bioelektroniczny aspekt pochodzenia i ewolucji enzymów. W: Bioelektronika. Materiały VI Sympozjum. (Red.) W. Sedlak, J. Zon i M. Wnuk, 151-155. Katolicki Uniwersytet Lubelski, 20-21 listopada 1987. Lublin: Redakcja Wydawnictw KUL.

Wnuk M.: 1994. Możliwość wpływu zanieczyszczeń elektromagnetycznych środowiska na mikroprocesory biologiczne. Roczniki Filozoficzne 42, z. 3 (Filozofia Przyrody i Ochrona środowiska): (99-113).

Yockey H. P.: 1977. A calculation of the probability of spontaneous biogenesis by information theory. J. Theoret. Biol. 67 (3): 377-398.

Zon J. R.: 1986. Bioelectronics: A background area for biomicroelectronics in the science of bioelectricity. Roczniki Filozoficzne 34 z.3 (Filozofia Przyrody): 183-201.

Zon J.: 1991-1992. Biomikroelektronika. Wstępna charakterystyka jej przedmiotu, metod i zadań. Roczniki Filozoficzne 39-40 z. 3 (Filozofia Przyrody): 151-161.

Zon J. R., Tien T. H.: 1988. Electronic properties of natural and modeled bilayer membranes. W: Modern Bioelectricity. (Ed.) A. A. Marino, 181-241. New York & Basel: Marcel Dekker. Inc.

Published
2020-11-13
Section
Articles