Oncogenesis and Emergence

  • Marcin Molski Adam Mickiewicz University in Poznań
  • Wiktor Chmielarczyk Maria Sklodowska-Curie National Research Institute of Oncology
  • Andrzej Pruszyński Maria Sklodowska-Curie National Research Institute of Oncology
Keywords: oncogenesis, cancer, nonlocality, quantum entanglement, EPR correlations, emergentism

Abstract

The population, molecular and submolecular (quantum) levels of oncogenesis are considered. The quantum description takes into account the nonlocal Einstein-Podolsky-Rosen correlations, interactions at-the-distance, quantum entanglement and macroscopic quantum coherence. In this approach, cancerogenesis is initiated by destruction of the quantum entanglement of the DNA molecules due to mutation, which leads to appearance of an oncogen and a local decoherence of the organism. In the genetic approach a cancer is the gene disease, whereas in the quantum approach — a disease of the living system. On the basis of the Humphreys criteria, an attempt of the ontological classification of bio- and ontogenesis is made. Those phenomena can be considered in terms of the coherent, synchronic and holistic emergence.

References

Aspect A., Dalibard J., Roger G.: Experimental test of Bell’s inequalities using time-varying analyzers, „Physical Review Letters” 39 (1982), s. 1804.

Aspect A., Grangier P., Roger G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities, „Physical Review Letters” 48 (1982), s. 91-94.

Aspect A., Grangier P.: Experiments on Einstein-Podolsky-Rosen type correlations between pairs of visible photons, [w:] „Quantum concepts in space and time”, red. R. Penrose, C. J. Isham, Oxford: Oxford University Press 1986.

Bell J. S.: On the Einstein-Podolsky-Rosen paradox, „Physics”, 1 (1964), s. 195-200.

Bell J. S.: On the problem of hidden variables in quantum theory, „Reviews of Modern Physics” 38 (1966), s. 447-452.

Bell J. S.: Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press 1987.

Bohm D.: The paradox of Einstein, Rosen and Podolsky, [w:] Quantum theory and measurements, red. J. A. Whiler, W. H. Zurek, Princeton: University Press 1983.

Capra F.: „Tao fizyki”, przeł. P. Macura, Kraków: Nomos 1994.

Chmielarczyk W., Pruszyński A.: Theoretical Oncology, www.TheoreticalOncology.org.pl

Chmielarczyk W., Wronkowski Z. Zwierko M.: Nowotwory złośliwe – główne zagrożenie zdrowotne populacji polskiej w XXI wieku, [w.:] Systemy wartości a procesy demograficzne, red. K. Slany, A. Małek, I. Szczepaniak-Wiecha. Rządowa Rada Ludności. Insytut Socjologii Uniwersytetu Jagiellońskiego. Zakład Wydawniczy „Nomos” Kraków. 2003. Tom XV s. 308-311.

Clemmesen J.: Statistical studies in malignant neoplasms. I: Review and results, København: Munksgaard 1965.

Cramer W.: Importance of statistical investigation in the Campaign against cancer. „Report Second International Cancer Congress. Ligue National Belgique Contre Cancer”, Bruxelles, 1 (1936), s. 441-459.

Davies P. C. W., Brown J. R.: Duch w atomie. Dyskusja o paradoksach teorii kwantowej, przeł. P. Amsterdamski, Warszawa: Cis 1996.

Didkowska J., Wojciechowska U., Tarkowski W., Zatoński W.: Nowotwory złośliwe w Polsce w 2000 roku. Centrum Onkologii Instytut im. M. Skłodowskiej- Curie, Warszawa 2003.

Doll R., Pet R.: The causes of cancer. Quantitatives estimates of avoidable risks of cancer in the United States today, „Journal of National Cancer Institute” 66 (1981), s. 1191-1308.

Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?, „Physical Review” 47 (1935( s. 777-780.

Freedman S. J., Clauser J. F.: Experimental test of local hidden-variable theories, „Physical Review Letters” 28 (1972), s. 938-941.

Freedman S. J., Clauser J. F.: Experimental test of local hidden-variable theories, [w:] Quantum theory and measurements, red. J. A. Wheeler, W. H. Zurek, Princeton: University Press 1983.

GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence. Worldwide, Version 1.0. IARC Cancer Base No. 5. Lyon: IARCPress, 2001, www.who.int/entity/cancer/resources/ iarc/en/

Grinberg-Zylberbaum G., Delaflor M., Attie L., Goswami A.: The Einstein-Podolsky-Rosen paradox in the brain: the transferred potential, „Physics Essays” 7 (1994), s. 422-428.

Hagan S., Hameroff S. R., Tuszyński J. A.: Quantum computation in brain microtubules: decoherence and biological feasibility, „Physical Review E” 65 (2002), s. 061901(1-11).

Ho M.-W.: The rainbow and the worm. The physics of organisms, Singapore: World Scientific 1993.

Humphreys P.: Emergence, not supervenience, „Philosophy of Science” 64 (1997), s. 337-345.

Humphreys P.: Aspects of emergence, „Philosophical Topics” 24 (1996), s. 53-70.

Humphreys P.: How properties emerge, „Philosophy of Science” 64 (1997), s. 1-17.

Josephson B. D., Pallikari-Viras F.: Biological utilisation of quantum nonlocality. „Foundations of Physics” 21 (1991), s. 197-207.

Julsgaard B., Kozhekin A., Polzik E. S.: Experimental long-lived entanglement of two macroscopic objects, „Nature” 413 (2001), s. 400-403.

Ladik J.: Outlines of a general framework of cancer initiation in the cell, „International Journal of Quantum Chemistry” 64 (1996), s. 379-385.

Ladik J., Förner W.: The beginnings of cancer in the cell, Berlin: Springer Verlag 1994.

Laskowski J.: Patologia Nowotworów, [w:] Zarys Onkologii, red. H. Kołodziejska, Warszawa: PZWL 1955.

Löwdin P.-O.: Quantum chemistry, cancer and aging, „Lakartidningen” 74 (1977), s. 3419-3421.

Lubiński J., Górski B., Kurzawski A.: Genetyka we wczesnej diagnostyce nowotworów, „Współczesna Onkologia” 45 (2000), s. 168-198.

Matsuno K.: Cell motility as and entangled quantum coherence, „BioSystems” 51 (1999), s. 15-19.

Molski M., Konarski J.: Coherent states of Gompertzian growth, „Physical Review E” 68 (2003), s. 021916(1-7).

Molski M.: Nielokalność i biokoherencja. „Roczniki Filozoficzne” 53 (2005), nr 1, s. 195-219.

Penrose R.: Shadows of the mind. A search for the missing science of consciousness, Oxford: Oxford University Press 1994.

Pizzi R., Gelain F., Fantasia A., Rossetii D., Vescovi A.: Nonlocality in biological systems? An experimental approach. Proceedings of Coherence. University of Rome „La Sapienza”, 2004, February 12-13, www.cifa-icef.org/news35.pdf

Pizzi R., Gelain F., Fantasia A., Rossetii D., Vescovi A.: Nonlocality in biological systems? An experimental approach. Nonlocal correlations between separated neural networks on printed circuit boards. Quantum Information and Computation. II. Proceedings of SPIE, Orlando, 2004, April 12-16.

Schrödinger E.: Discussion of probability relations between separated systems, „Proceedings of the Cambridge Philosophical Society”, 31 (1935), s. 555-563.

Siedlecki J. A.: Regulacja cyklu komórkowego a transformacja nowotworowa, „Nowotwory” 44 (1994), s. 44-68.

Thaheld F.: Biological nonlocality and the mind-brain interaction problem: comments on a new empirical approach, „BioSystems” 70 (2003), s. 35-41.

Tittel W., Brendel J., Gissin B., Herzog T., Zbinden H., Gisin N.: Experimental demonstration of quantum correlations over more than 10 km, „Physical Review A” 57 (1998), s. 3229-3232.

Waliszewski P., Molski M., Konarski J.: On the holistic approach in cellular and cancer biology: nonlinearity, complexity and quasi-determinism of the dynamical cellular network, „Journal of Surgical Oncology” 68 (1998), s. 70-78.

Wheldon T. E.: Mathematical models in cancer research, Bristol: Adam Hilger 1988.

Woolf N. J.: A possible role for cholinerigic neuronsof the basal forebian and pontomeencephalon in consciousness, „Consciousness and Cognition” 6 (1997), s. 574-596.

Published
2020-10-14
Section
Articles