Mathematical Proof from the Formalistic Viewpoint. Part II

  • Krzysztof Wójtowicz Warsaw School of Social Psychology
Keywords: Hilbert’s program, Frege’s Platonism, mathematical intuition

Abstract

In the second part I discuss Frege’s and Hilbert views on the nature of mathematical proof, in particular their discussion concerning the problem of implicit definitions. I also discuss Hilbert’s program and conclude with some remarks concerning the problem of the “decline of intuition” in the formalistic conception of mathematical proof.

Author Biography

Krzysztof Wójtowicz, Warsaw School of Social Psychology

Prof. Dr. Krzysztof Wójtowicz – Institute of Philosophy, Warsaw School of Social Psychology

References

Bernays P. (1967): Hilbert, David, [w:] P. Edwards (red.), The Encyclopedia of Philosophy, vol. 3, New York: Macmillian Publishing Co. and The Free Press, 496-504.

Detlefsen M. (2005): Formalism, [w:] S. Shapiro (red.), The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press, 236-317.

Feferman S. (2000): Mathematical intuition vs. mathematical monsters, „Synthese” 125, 317-332.

Frege G. (1903): Grundgesetze der Arithmetik 2, Jena: H. Pohle.

Frege G. (1906): Über die Grundlagen der Geometrie, „Jahresbericht der Deutschen Mathematiker-Vereinigung” 12, 319-324, 368-375.

Freudenthal H. (1962): The main trends in the foundations of geometry in the 19th century, [w:] E. Nagel, P. Suppes, A. Tarski (red.) Logic, Methodology and Philosophy of Science, Proceedings of the 1960 Congress, Stanford: Stanford University Press, 613-621.

Hahn H. (1980): Empiricism, Logic and Mathematics, Dordrecht–London–Boston: D. Reidel.

Heine E. (1872): Die Elemente der Funktionenlehre, „Journal für die reine und angewandte Mathematik” 74, 172-188.

Hilbert D. (1926): Über das Unendliche, „Mathematische Annalen” 95, 161-190. Przekład polski w: Murawski 1986, 288-307.

Hilbert D. (1928): Die Grundlagen der Mathematik, „Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität” 6; 65-85. Przekład angielski w: J. Van Heijenoort: From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879-1931, Cambridge, Mass.: Harvard University Press 1967, 464-479.

Kant I. (1957): Krytyka czystego rozumu, t. I, tł. R. Ingarden, Warszawa: PWN.

McCarty D. C. (2004): David Hilbert and Paul du Bois-Reymond: Limits and Ideals, [w:] G. Link (red.), One Hundred Years of Russell’s Paradox, Berlin–New York: Walter de Gruyter, 517-532.

Murawski R. (1984): G. Cantora filozofia teorii mnogości, „Studia Filozoficzne” 11-12 (8-9), 75-88.

Murawski R. (1986) (red.): Filozofia matematyki. Antologia tekstów klasycznych, Poznań: Wydawnictwo UAM.

Murawski R. (1993): Rozwój programu Hilberta, „Wiadomości Matematyczne” 30, 51-72.

Poincaré H. (1952): Science and Method, New York: Dover Publications.

Shapiro S. (1996): Space, Number and Structure: A Tale of Two Debates, „Philosophia Mathematica” 3 (4), 148-173.

Shapiro S. (2000): Thinking about Mathematics. The Philosophy of Mathematics, Oxford: Oxford University Press,.

Shapiro S. (2005): Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics, „Philosophia Mathematica” 13 (1), 61-77

Sieg W. (1984): Foundations for analysis and proof theory, „Synthese” 60, 159-200.

Simpson S.G. (1988): Partial Realisations of Hilbert’s Program, „Journal of Symbolic Logic” 53, 349-363.

Smorynski C. (1977): The incompleteness theorem, [w:] J. Barwise (red.), Handbook of mathematical logic, Amsterdam: North-Holland, 821-864.

Thomae J. (1898): Elementare Theorie der analytischen Funktionen einer complexen Veränderlichen, 2. Aufl., Halle: L. Nebert.

Zermelo E. (1908): A new proof ot the possibility of a well-ordering, [w:] J. van Heijenoort (red.), From Frege to Gödel. A source-book in mathematical logic, 1879-1931, Cambridge, Mass.: Harvard University Press 1967, 183-198.

Published
2020-10-13
Section
Articles