Mathematical Proof from the Formalistic Viewpoint. Part I

  • Krzysztof Wójtowicz Warsaw School of Social Psychology
Keywords: Descartes, Berkeley, Peacock, Pasch, formalizm

Abstract

This article is the first one to examine the evolution of the notion of mathematical proof in a historical perspective. First I present the intuitive, approach of Descartes, according to which mathematical proof is based on self-evident principles. I follow with an analysis of Berkeley’s mathematical instrumentalism and argue that he can be considered a predecessor of modern formalism. The article also deals with the ideas of Peacock and Pasch, and their role in the development of the modern formalistic viewpoint.

Author Biography

Krzysztof Wójtowicz, Warsaw School of Social Psychology

Prof. Dr. Krzysztof Wójtowicz – Institute of Philosophy, Warsaw School of Social Psychology

References

Bassler O. B. (2006): The surveyability of mathematical proof: a historical perspective, „Synthese” 148, 99-133.

Berkeley G. (2005): Traktat o zasadach ludzkiego poznania, Kraków: Zielona Sowa.

Coffa A. (1986): From Geometry to tolerance: sources of conventionalism in nineteenth-century geometry, [w:] R. Colodny (ed.), From quarks to quasars: Philosophical problems of modern physics, University of Pittsburgh Series, Vol. 7, Pittsburgh: Pittsburgh University Press, 3-70.

Copleston F. (1997): Historia filozofii, tom V. Od Hobbesa do Hume’a, Warszawa: PAX.

Descartes R. (1958): Prawidła kierowania umysłem; poszukiwanie prawdy przez światło przyrodzone rozumu, Warszawa: PWN.

Descartes R. (2002): Rozprawa o metodzie właściwego kierowania rozumem i poszukiwania prawdy w naukach, Kraków: Zielona Sowa.

Detlefsen M. (2005): Formalism, [w:] S. Shapiro (red.), The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press, 236-317.

Fallis D. (2003): Intentional gaps in mathematical proofs, „Synthese”, 134, 45-69.

Gray J. (1989): Ideas of Space, Euclidean, Non-Euclidean and Relativistic, wyd. 2, Oxford: Oxford University Press.

Pasch M. (1882): Vorlesungen über neuere Geometrie, Leipzig: Teubner.

Peacock G. (1830): Treatise on Algebra, Cambridge: Deighton; London: Rivington, and Whittaker, Treacher&Arnot.

Published
2020-10-13
Section
Articles