On Some Laws of Logic and Principles of General Theory of Being

  • Stanisław Kiczuk The John Paul II Catholic University of Lublin, Faculty of Philosophy
Keywords: modern logic; truth-functional operator; classical propositional calculus; principle of sufficient reason

Abstract

Some principles of general theory of being have their equivalents in laws of classical logic. For a long time this was not distinctly noticed, as logic was treated rather as technology of discussion, and not as a system of propositions stated in the objective language and concerning connections between facts. It may be generally said that some primary principles of being and some laws of logic state the same most fundamental connections between facts, between states of things. There are also principles of philosophy that do not have such equivalents in laws of logic. These include the principle of sufficient reason. The concept of intuitive truth of propositions that reappeared in modern logic first of all in connection with K. Gödel’s theorem of 1931 formed an intellectual climate that made it possible for classical logicians to accept also those principles of general theory of being that do not have equivalents in laws of standard logic. It may be said that these philosophical principles may be included in the outward basis of modern logic.

References

Ajdukiewicz K.: Zarys logiki, Warszawa 1960.

Bocheński J.M.: The General Sense and Character of Modern Logic, [w:] Modern Logic. A Survey, red. E. Agazzi, Dordrecht–Boston–London 1980, s. 3-14.

Bocheński J.M.: Logika i ontologia, [w:] Logika i filozofia, red. J. Parys, Warszawa 1993, s. 106-132.

Czeżowski T.: Logika, Warszawa 1968.

Easwaran K.: The Role of Axioms in Mathematics, „Erkenntnis” 68 (2008), Nr. 3, s. 381-391.

Hodges W.: Traditional Logic, Modern Logic and natural Language, „Journal of Philosophical Logic” 38 (2009), No. 6, s. 589-606.

Kiczuk S.: Zagadnienie obowiązywalności klasycznego rachunku zdań, „Roczniki Filozoficzne” 36 (1988), z. 1, s. 39-56.

Kiczuk S.: Związek przyczynowy a logika przyczynowości, Lublin 1995.

Kotarbiński T.: Wykłady z dziejów logiki, Warszawa 1985.

Kraszewski Z.: Logika – nauka rozumowania, Warszawa 1975.

Krąpiec M. A.: Metafizyka, Poznań 1966.

Łukasiewicz J.: O intuicjonistycznym rachunku zdań, [w:] Z zagadnień logiki i filozofii, red. J. Słupecki, Warszawa 1961, s. 261-273.

Mostowski A.: Logika matematyczna, Warszawa–Wrocław 1948.

Quine W.V.O.: Filozofia logiki, tł. H. Mortimer, Warszawa 1977.

Stępień A.B.: Wprowadzenie do metafizyki, Kraków 1964.

Published
2020-06-09
Section
Discussions