Structurality and Deductivity of Mathematics: Contemporary Structuralism in the Philosophy of Mathematics
Contemporary structuralism in the philosophy of mathematics
Abstract
It is common for different types of mathematical structuralism that the conjunction of two statements ( a) mathematics is science about structures and b) mathematics is deductive science) is true, Distinct arguments for this two features of mathematics are exanimated therefore the main concepts (structurality and deductivity) are understood differently, the results are various types of structuralism. We claim that it is possible to establish the way of understood of this two concepts in witeh they are equivalent. We argue that can interpret mathematical structuralism as equivalence: a) mathematics is science about structures if and only, if b) mathematics is deductive science
References
Ajdukiewicz, Kazimierz. 1921. „Pojęcie dowodu w znaczeniu logicznym”. W: Język i poznanie. T. 1. Warszawa: Państwowe Wydawnictwo Naukowe [PWN] (= Ajdukiewicz 1960).
Ajdukiewicz, Kazimierz. 1960. Język i poznanie. T, 1. Warszawa: Państwowe Wydawnictwo Naukowe [PWN].
Ajdukiewicz, Kazimierz. 1965. Logika pragmatyczna. Warszawa: Państwowe Wydawnictwo Naukowe [PWN].
Benacerraf, Paul. 1965. „What Numbers Could Not Be”. Philosophical Review 74: 47–73. Przedruk w: Benacerraf i Putnam 1983, 271-294.
Benacerraf, Paul, i Hilary Putnam H. 1983. Philosophy of mathematics. selected readings, Cambridge: Cambridge Universitv Press.
Cantor, Georg (1883), Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Leipzig: Teubner. Przedruk w: Zermelo 1932.
Dadaczyński, Jerzy. 2002a. „Antynomie teoriomnogościowe a powstanie klasycznych kierunków badania podstaw matematyki”. W: Matematyka w oczach filozofa, 224–243. Kraków: OBI, Tarnów: Biblos (= Dadaczyński 2002b).
Dadaczyński, Jerzy. 2002b. Matematyka w oczach filozofa. Kraków: OBI, Tarnów: Biblos,
Dedekind, Richard. 1888. Was sind und was sollen die Zahlen?. Brunsehweig: Fredrieh Yieweg und Solin. Ang.: The nature and meaning of numbers. Tłum. Wooster Woodruff Beman. W: Dedekind 1963, 1-58.
Dedekind, Richard. 1963. Essays on the Theory of Numbers. Tłum. Wooster Woodruff Beman. New York: Dover Publications,
Heiberg, J.L., i Richard Fitzpatrick. 2008. Euclid’s Elements of geometry: the Greek text of J.L. Heiberg (1883-1885): from Euclidis Elementa edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885. Edited, and provided with a modern English translation, by Richard Fitzpatrick. First edition – 2007. Revised and corrected – 2008. B.m.w.: b.w.
Hellman, Geoffrey. 1989. Mathematics without Numbers: Towards a Modal-Structural Interpretation. Oxford: Clarendon Press.
Hellman, Geoffrey. 2001. „Three Varieties of Mathematical Structuralism”. Philosophia Mathematica 9, issue 2: 184-211. DOI: 10.1093/philmat/9.2.184.
Hellman, Geoffrey. 2005. „Structuralism”. W: The Oxford Handbook of philosophy of mathematics and logic, red. Stewart Shapiro, 536–562. Oxford: Oxford University Press (= Shapiro 2005),
Horsten, Leon. 2007, Philosophy of Mathematics. W: The Stanford Encyklopedia of Philosophy (Spring 2019 Edition), red. Edward N. Zalta. Dostęp 2.01.2019. https://plato.stanford.edu/entries/philosophy-mathematics.
Murawski, Roman. 1994. Filozofia Matematyki. Antologia tekstów klasycznych, Poznań: Wydawnictwo Naukowe UAM.
Mostowski, Andrzej. 1967. „O niektórych nowych wynikach meta-matematycznych dotyczących teorii mnogości”. Studia Logica 20: 99–116.
Parsons, Charles 1990. „The Structuralist View of Mathematical Object”. Synthese 84, no, 3: The Philosophy of Mathematics, Part II (Sep. 1990): 303–346.
Reck, Erich H. 2003. „Dedekind’s Structuralism: An Interpretation and Partial Defense”. Synthese 137, no. 3: 369–419.
Resnik, Michael D. 1981. „Mathematics as a Science of Patterns: Ontology and Reference”. Nous 15, no, 4: Special Issue on Philosophy of Mathematics (Nov., 1981): 529–550.
Resnik, Michael D. 1996. „Structural Relativity”. Philosophia Mathematica 4, issue 2: 83–99.
Resnik, Michael D. 1997. Mathematics as a Science of Patterns. Oxford: Clarendon Press.
Russell, Bertrand. 1920. Introduction to Mathematical Philosophy. London: George Allen and Unwin, LTD. Tłum, pol. Wstęp do filozofii matematyki. Tłum, Czesław Znamierowski, Warszawa: Fundacja Aletheia, 2003.
Shapiro, Stewart (ed.). 2005. The Oxford Handbook of philosophy of mathematics and logic, Oxford: Oxford University Press,
Shapiro, Stewart. 1997. Philosophy of Mathematics: Structure and Ontology. Oxford: Oxford University Press.
Tarski, Alfred. 1969. „Truth and Proof”. Scientific America 220, no. 6: 63-77. Pol.: „Prawda i dowód”. Tłum. Jerzy Krzywicki, w: Tarski 1995, 292-332.
Tarski, Alfred. 1995. Pisma logiczno-filozoficzne. T. 1: Prawda, red. Jan Zygmunt, Warszawa: Wydawnictwo Naukowe PWN.
Tarski, Alfred. 2012. Wprowadzenie do logiki i metodologii nauk dedukcyjnych, Warszawa: Fundacja na rzecz informatyki, logiki i matematyki.
Tkaczyk, Marcin. 2016. „Kazimierz Ajdukiewicz’s Philosophy of Mathematics, Studies in East European Thought 68: 21–38. DOI: https://doi.org/10.1007/s11212-016-9245-x.
Torretti, Ricardo. 1999. The Philosophy of physics. Cambridge: Cambridge University Press,
Van Heijenoort, Jean. 1967. From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931. Harvard: Harvard University Press,
Von Neumann, Johann. 1923. „Zur Einfuhrung der transfiniten Zahlen”. Acta litteraria Academiae Scientiarum Szegedensis. Acta Scientiarum Mathematicarum 1: 199–208.
Zermelo, Ernst. 1908, „Untersuchungen über die Grundlagen der Mengenlehre. I”. Mathematische Annalen 65, Nr 2: 261–281. DOI: https://doi.org/10.1007/BF01449999. Ang.: „Investigation in the Foundations of Set Theory. I”. w: van Heijenoort, 1967.
Zermelo, Ernst (red.). 1932. Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Berlin: Verlag von Julius Springer.
Copyright (c) 2021 Roczniki Filozoficzne
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.