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1. BACKGROUND 

The connective of realization is used to relate expressions to contexts, be 
it possible worlds, moments in time, points in space, rational agents or else, 
generally referred to as positions. The first logic of the connective of reali-
zation (positional logic) was built by Jerzy Łoś for the needs of the methodo-
logy of natural sciences. The connective of realization was typically under-
stood as a connective of relativized truth (or satisfaction). Such an under-
standing of realization is reflected in the distribution laws of the realization 
connective with respect to classic propositional connectives. Distribution 
laws mimic the usual truth conditions for compound expressions. It turns 
out, however, that notions of realization other than being true may require 
weaker assumptions (TKACZYK 2009). Łoś himself saw the possibility of 
using the tool he created to study other types of realizations, he also sug-
gested a multi-valued interpretation of the connective of realization (1948), 
but he did not question the validity of the distribution laws. Nicolas Rescher 
(1971, 213–228) developed a positional temporal logic system with three 
values: truth, falsehood and gap (indeterminacy). Systematic research on the 
multi-valued interpretation of the logic of realization was undertaken by 
Marcin Tkaczyk (2013). He defined a general matrix model and also built 
and examined four positional calculi— ,RB ,RK ,RP CR — differing in terms of 
distribution of the realization connective with respect to negation. In a later 
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work, Tkaczyk presented a simple algorithm for constructing adequate 
positional calculi with specific structures (TKACZYK 2018). Jarmużek (2007) 
considers other ways of weakening the assumptions regarding realization. 

In the present paper I will show that the matrix systems ,BR  ,KR  PR  are 
not definable with the use of Tkaczyk’s algorithm and I will formulate for 
them adequate Tkaczyk-style semantics (TKACZYK 2018). Section 2 intro-
duces the weak positional language, sections 3 and 4 cover Tkaczyk’s results 
concerning, respectively, set-theoretic and matrix semantics for positional 
calculi. Section 5 comprises the discussion of the relationship between the 
two approaches. 

2. WEAK POSITIONAL LANGUAGE 

 The set of positional language symbols, in its most elementary variant, 
extends the alphabet of the classical propositional calculus by a symbol 
representing the realization operator and schematic names of positions. 
Therefore, this set consists of the following symbols:  

– infinitely, but countably many schematic propositional letters: “ p ”, “q
”, “ r ”, “ 1p ”, “ 2p ”, ...; 

– infinitely, but countably many schematic names (indicators), 
representing points of realization: “a ”, “b ”, “c ”, ...; 

– propositional connectives: “ ”, “ ”, “ ”, “ ”, “º ”, i.e. respectively 
the symbols of negation, conjunction, disjunction, implication, equivalence; 

– positional operator, that is the connective of realization “”; 
– and brackets as punctuation marks. 
In metalanguage we use the Greek letter “ a ” to denote individual names, 

“j ” and “ y ” to denote quasi-formulas, and “A ” and “B ” to denote arbi-
trary expressions of the constructed language.   is the set of all individual 
names. We require that the set   and the set of sentence letters are disjoint. 
Defintion 1 (quasi-formula) The set of quasi-formulas   is the smallest 
set containing the set   of schematic propositional letters and closed 
under the application of negation, conjunction, disjunction, implication and 
equivalence:  

 for any j Î  , ;j Î   
 if j Î  , then ;( )j Î   
 if j  and y Î  , then ( )j y , ( )j y , ( )j y , .( )j yº Î   
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Therefore all schematic propositional letters, a negation of a quasi-formula, 
and a conjunction, disjunction, implication and equivalence of two quasi-
formulas are quasi-formulas.   is identical to the set of formulas .PC  
Quasi-formulas themselves are not formulas of a weak positional language, 
but they are included in atomic expressions as arguments of the realization 
connective. 

Defintion 2 (atomic formula) An atomic formula is any sign cluster 

,aj  
in which j Î  , and .a Î   

The quasi-formula j  in the formula aj  is the scope of the connective 
“” in this formula, a ndividual name a  is called an indicator and   is 
the set of all atomic formulas. Compound formulas of the weak positional 
language are created with the use of propositional connectives of negation, 
conjunction, disjunction, implication and equivalence. 

Defintion 3 (formula) A set   of the formulas of the weak positional 
language is the smallest set such that:  

 for any ,A Î  ;A Î   
 for any ,A Î  ;( )A Î   
 for any ,,A B Î  ,( )A B ,( )A B  ,( )A B .(  )  A Bº Î   

We assume that the realiztion connective binds the most strongly among 
all constants present in the language, and for the remaining connectives, 
both in relation to quasi-formulass and formulas, the usual binding order 
applies, i.e. “ ”, “ ” , “ ” , “ ” , “ ”.º  It is allowed to omit the outermost 
brackets and redundant inner brackets in formulas. In the case of complex 
quasi-formulas, the outer brackets are obligatory, but one can omit the 
redundant inner brackets, taking into account the binding order. 

Note that in the   language, propositional connectives are syntac-
tically ambiguous—they can combine symbols belonging to different cate-
gories (quasi-formulas or formulas) and form compound formulas if their 
arguments are formulas, or complex quasi-formulas if their arguments are 
quasi-formulas. We talk about internal usage of (or occurrence of) con-
nectives when they occur within the scope of the “ ” operator, creating 
quasi-formulas, and about external usage (occurrence) when they appear 
outside this scope to form formulas. For example, in the formula 

( )p qa   
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the connective of negation is used externally and the connective of con-
junction is used internally. The distribution laws of the realization operator 
with respect to propositional connectives: 

,a aj j º     (1) 
( ) ,a a aj y j y º      (2) 
( ) ,a a aj y j y º      (3) 
( ) ,a a aj y j y º      (4) 
( ) ( ),a a aj y j yº º º     (5) 

equate the external and internal use of these connectives. The minimal weak 
positional system in which all distribution laws are provable, i.e. the system 
MR, was described and examined by Tomasz Jarmużek and Andrzej Pie-
truszczak (2004) (JARMUŻEK and TKACZYK 2015 proposed alternative axio-
matic and semantic approaches to the MR system). 

3. PURELY DISTRIBUTIVE CALCULI 

Let e  be a substitution of the formulas   for propositional letters in 
formulas. The axiomatization of the systems considered by Tkaczyk com-
prises all axioms 

( ), , of classical propositional calculus,e for any tautologyj j  (A0) 

the rule of the schema Modus Ponens: 

,

.

A B A

B

   (MP) 

and an arbitrary set of specific axioms among implications: 
with respect to the connective of negation 

,a aj j      (RA) 

,a aj j      (RB) 

with respect to the connective of conjunction 

( ) ,a aj y j     (RC) 
( ) ,a aj y y     (RD) 

( ),a a aj y j y       (RE) 
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with respect to the connective of disjunction 

( ) ,a a aj y j y       (RF) 
( ),a aj j y     (RG) 
( ),a ay j y     (RH) 

with respect to the connective of implication 

( ),a aj j y      (RI) 
( ),a ay j y     (RJ) 

( ) ( ),a a aj y j y       (RK) 

with respect to the connective of equivalence 

( ),a a aj y j y  º     (RM) 

( ),a a aj y j y    º     (RN) 

( ) ( ),a a aj y j yº       (RP) 

( ) ( ).a a aj y y jº       (RQ) 

The formulas of the schemata (RA)–(RQ) we call implicational distribution 
laws. The schemata (RA) and (RB) taken together are deductively equivalent 
to distribution law (1), the schemata (RC), (RD) and (RE) are equivalent 
to (2), the schemata (RF), (RG) and (RH) are equivalent to (3), (RI), (RJ) and 
(RK) taken together are equivalent to (4), and (RM), (RN), (RP), (RQ) to (5) 
(TKACZYK 2018, 170). 

The systems so described—that is with the use of the schema (A0), 
selected distribution laws (RA)–(RQ) and from (MP) as the only primary 
rule—we shall call purely distributional. A system based only on axioms of 
the schema (A0) is the system Zero. The remaining systems are named after 
the distribution laws effective for them, for example BEHJN is a system of 
the axioms (A0), (RB), (RE), (RH), (RJ), (RN) and the rule (MP). The system 
ABCDEFGHIJLMNPQ can be shortened to A-Q. Tkaczyk proved that A-Q is 
deductively equivalent to the system MR  (TKACZYK 2018, 172). 

Note that the lack of any assumptions about the meaning of connectives 
in the system Zero (their total non-extensionality) leads to quasi-formulas 
being completely unanalysable. Interpretation of atomic formulas is comple-
tely arbitrary and as a result the system is adequate with respect to the clas-
sical bivalent matrix. 
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Defintion 4 (set-theoretic model) A set-theorical model of a weak positio-
nal language is a triple 

= , , ,á ñM d f   (6) 

such that 

,¹ Æ  
: ,d    
: ( ). Ãf    

  in the set-theoretic model is understood as a set of relativization points 
and ( )ad  is the unique designate of the individual name a Î  . ( )jf  is a set 
of the relativization points from  , in which the quasi-formula j  is 
satisfied. We stress that the function f  is totally arbitrary, that is its value 
for compound quasi-formulas does not have to be dependent on the value of 
the arguments of those quasi-formulas. For example, the interpretation of the 
quasi-formula j Î   and its negation j  can be in a certain model the 
same subset of the domain. Different classes of models in the set-theoretic 
semantics are determined by imposing additional conditions on the function f  
(TKACZYK 2018, 174–175). 

The atomic formula aj  is true in the set-theoretic model M  if and only 
if the designate of the individual name a  belongs to the interpretation of the 
quasi-formula j , symbolically 

( ) ( ),iffaj a jÎ M d f   (7) 

for any a Î   and j Î  . For compound formulas the (classical) con-
ditions apply: 

iff ,A AM M    (8) 
iff and ,A B A BM M M     (9) 
iff or ,A B A BM M M     (10) 
iff or ,A B A BM M M     (11) 
iff , or , .A B A B A BºM M M    (12) 

Theorem 1 (TKACZYK 2018) Any purely distributional system is complete 
with respect to an appropriate set-theoretic semantics. 

The system Zero is complete with respect to the class of all models. 
Classes of models adequate to other purely distributional systems can be 
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obtained algorithmically by imposing appropriate conditions on the f  func-
tion (TKACZYK 2018, 174–175): 

with respect to the negation operator 

( ) ( ),j j Í -f f   (13) 
( ) ( ),j j- Í f f   (14) 

with respect to the conjunction connective 

( ) ( ),j y j Íf f   (15) 
( ) ( ),j y y Íf f   (16) 
( ) ( ) ( ).j y j yÇ Í f f f   (17) 

with respect to the connective of alternative 

( ) ( ),j j yÍ f f   (18) 
( ) ( ),y j yÍ f f   (19) 
( ) ( ) ( ).j y j y Í Èf f f   (20) 

with respect to the connective of implication 

( ) ( ),j j y- Í f f   (21) 
( ) ( ),y j yÍ f f   (22) 
( ) ( ) ( ),j y j y Ç Íf f f   (23) 

with respect to the connective of equivalence 

( ) ( ) ( ),j y j yÇ Í ºf f f   (24) 
( ) ( ) ( ),j y j y- Ç - Í ºf f f   (25) 

( ) ( ) ( ),j y j yº Ç Íf f f   (26) 
( ) ( ) ( ),j y y jº Ç Íf f f   (27) 

The conditions (13), (14) taken together characterize the classical con-
nective of negation; (15), (16), (17)—conjunction; (18), (19), (20)— 
disjunction; (21), (22), (23)—inmplication; and (24), (25), (26), (27) 
classical connective of equivqlence (TKACZYK 2018, 174–175). Table 1 
shows the relations between the classes of models determined by the 
properties of the satisfaction function and the truth of the distribution laws 
Observe that the truth condition (7) for the connective   is analogous to 
that of the hybrid satisfaction operator @  (cf. ARECES and TEN CATE). More 
detailed account of the relationship between hybrid and positional languages 
shall be given elsewhere. 
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Table  1: Distribution laws and the conditions concerning valuation 

(RA)—(13),    (RF)—(18), (RK)—(23),  

(RB)—(14),    (RG)—(19), (RM)—(24),  

(RC)—(15),    (RH)—(20), (RN)—(25),  

(RD)—(16),    (RI)—(21), (RP)—(26),  

(RE)—(17),    (RJ)—(22), (RQ)—(27).  

4.  MATRIX SYSTEMS 

The general model for the weak positional language was defined in Tka-
czyk (2013, 6–8). 

Defintion 5 (matrix model)  A matrix model of the weak positional lan-
guage is the quintuple 

*= , , , , ,á W W ñM d s   (28) 

in which 
,¹ Æ  
,W ¹ Æ  

* ,W Í W  
: ,d    
: ´  Ws    

where the values of function s  for ,u já ñ , u Î   and a quasi-formula j  is 
determined by operations—unary f  and binary , , ,   ºf f f f —in the set W  in 
the following way: 

( , ) = ( ( , )),x xj js f s   (29) 
( , ) = ( ( , ), ( , )),x x xj y j ys f s s   (30) 
( , ) = ( ( , ), ( , )),x x xj y j ys f s s   (31) 
( , ) = ( ( , ), ( , )),x x xj y j ys f s s   (32) 
( , ) = ( ( , ), ( , )).x x xj y j yººs f s s   (33) 

  i d  are the same as in the set-theoretic model, W  is a set of logical values 
and its subset *W  a set of designated values. An atomic formula aj  is true in 
a matrix model M  if and only if the function s  of the model M  assigns a de-
signated value to the quasi-formula j  in the point determined by a . 
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*( ( ), ) .iffaj a j Î W M s d   (34) 

The truth conditions of the compound formulas are classial—(8)–(12). 
Tkaczyk constructed and examined four systems in — BR , KR , PR , 

CR —different differing in terms of the distribution of “ ” over the con-
nective of negation. The system BR  is based on the axioms (A0), (2), 

( ) ,a a aj y j y  º        (35) 

and the primitive rules: (MP) and rules of mutual interchange of quasi-
formulas of the schemata: 

,j j    (36) 
( ),j y j y       (37) 
( ),j y j y      (38) 

( ) ( ),j y j y y jº      (39) 

 for any ,j y Î  . “  ” is the symbol of mutual interchange. The system 
BR  is adequate with respect to the class of models B , in which: 

*= {1,0, , }, = {1, },X Y XW WB B   (40) 

and the operations 
Bf , 

Bf , 
Bf , 

Bf , º
Bf  are determined as in table 2. 

Table  2: Operations 
Bf , 

Bf , 
Bf , 

Bf , º
Bf  

      1 X Y 0   1 X Y 0   1 X Y 0  º  1 X Y 0 

1 0  1 1 X Y 0  1 1 1 1 1  1 1 X Y 0  1 1 X Y 0 

X X  X X X 0 0  X 1 X 1 X  X 1 X 1 X  X X X 1 X 

Y Y  Y Y 0 Y 0  Y 1 1 Y Y  Y 1 1 Y Y  Y Y 1 Y Y 

0 1  0 0 0 0 0  0 1 X Y 0  0 1 1 1 1  0 0 X Y 1 

It is easy to check that no distribution law is a tautology of the system 
.BR  Let us consider the formula 

,a ap p      (41) 
of the schema (RB). Let ( ( ), ) =a p Xs d  in a certain model ÎM B . Then both 
the formula “ ap ” and the formula “ a p ” (since ( ) =X X

Bf ) are true in 
M . But since “ ap ” is true then its negation “ ap ” will be false in the 
model M . Thus the interpretation is a countermodel for (RB). Let us now 
take into consideration the formula of the form (RA): 
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,a ap p      (42) 
If in the model ÎM B , ( ( ), ) =a p Ys d , then to “ ap ” will be false in M , 
while the formula “ ap ”, that is the antecedent of the implication (42), will 
be true. However, since ( ) =Y Y

Bf , then the formula to “ a p ” will be false 
in the model M , so the implication will also be false (42). The system RK  can 
be obtained by the extension of the system RB  by schema (RB). The set K  of 
models, adequate with respect to RK , is determined by the sets of values: 

*= {1, 0, }, = {1},YW WK K   (43) 

and the set of operations , , , ,    º
K K K K Kf f f f f , described in table 3.  

Table  3: Operations , , , ,    º
K K K K Kf f f f f  

      1 Y 0   1 Y 0   1 Y 0  º  1 Y 0 

1 0  1 1 Y 0  1 1 1 1  1 1 Y 0  1 1 Y 0 

Y Y  Y Y Y 0  Y 1 Y Y  Y 1 Y Y  Y Y Y Y 

0 1  0 0 0 0  0 1 Y 0  0 1 1 1  0 0 Y 1 

Obviously in the system KR  the distribution law (RA) does not apply. The 
countermodel is the same as in the case of BR . 

The system PR  is obtained through adding to BR  schema (RA). RP  is 
adequate with respect to the class of models P : 

*= {1, 0, }, = {1, },X XW WP P   (44) 
the operations , , , ,    º

P P P P Pf f f f f  in the set WP  are characterized in table 4.  

Table  4: Opertions , , , ,    º
P P P P Pf f f f f  

    1 X 0   1 X 0   1 X 0  º  1 X 0 

1 0  1 1 X 0  1 1 1 1  1 1 X 0  1 1 X 0 

X X  X X X 0  X 1 X X  X 1 X X  X X X X 

0 1  0 0 0 0  0 1 X 0  0 1 1 1  0 0 X 1 

Let us note, that formally the class of models P  differs from the class K  
only in the set of designated values—in the former the designated value is, 
besides truth, the non-classical value X. Therefore the distribution law (RA) 
is not a chema of a tautology of the class of models P. A countermodel for 
the formula of schema (RA) is, as in BR , such an interpretation, in which for 
a certain j Î  , a Î  , ( ( ), ) = Xa js d . 
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In the system CR  the axiom schemata (A0), (2) and all the rules of the system 
BR  and, additionally, the distribution law (1) are accepted. CR  is adequate with 

respect to the class of models C , determined by the sets of values: 
*= {1,0}, = {1},W WC C   (45) 

with the operations 
Cf , 

Cf , 
Cf , 

Cf , º
Cf  in the set WC , presented in table 5: 

Table  5: Operations 
Cf , 

Cf , 
Cf , 

Cf , º
Cf  

      1 0   1 0   1 0  º  1 0 

1 0  1 1 0  1 1 1  1 1 0  1 1 0 

0 1  0 0 0  0 1 0  0 1 1  0 0 1 

Theorem 2 (completeness) Each of the systems BR , KR , PR , CR  is complete 
with respect to its matrix semantics (TKACZYK 2013). 

CR  is deductively equivalent to the system  MR  (TKACZYK 2013, 18), so 
the realization operator is there completely distributive over all propositional 
connectives. For the sake of further considerations we shall introduce dis-
tribution laws in the systems BR , KR  and PR . Because the systems KR  and 
PR  are extensions of the system BR , every theorem of BR  is also a theorem of 

each KR , PR . 

( )R a aj j y 
B

     (46) 

Proof: 

1.  ( ) ( ) ( )a a aj y j y    º        (35) 

2.  ( ) ( ) ( )a a aj y j y            1, (A0) 

3.  ( )a a aj y j y       2, (36), (37)  

4.  ( ( )) ( ( ))a a a a aj y j y j j y            (A0)  

5.  ( )a aj j y     4, 3´(MP)  

 
Analogously we prove the implication (RH). 

( )R a a aj y j y  
B

      (47) 
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Proof:  

1.   ( ) ( ) ( )a a aj y j y    º        (35)  

2.  ( ) ( ) ( )a a aj y j y            1, (A0)  

3.   ( ) ( ) )a a aj y j y       2, (37), (36)  

( )R a ay j y 
B

     (48) 

Proof:  

1.   ( )a ay j y      (RH)  

2.  ( )a ay j y        1, (37) 

3.   ( )a ay j y       2, (36) 

4.   ( )a ay j y     3, (38)  

( )R a a aj y j y  º
B

      (49) 

Proof: 

1.   ( )a ay j y     thesis (RJ)  

2.   ( )a aj y j     thesis (RJ)  

3.   ( ) ( )a a a aj y y j j y          1, 2, (A0)  

4.  ( ) ( ) (( ) ( ))a a ay j j y y j j y   º        (2)  

5.   (( ) ( ))a a aj y y j j y         3, 4  

6.   ( )a a aj y j y  º     5, (39)  

( ) ( ),R a a aj y j y  
K

      (50) 

Proof:  

1.   ( )a a aj y j y   º        (35)  

2.   ( ) ( )a a aj y j y           1, (A0)  

3.   ( )a a aj y j y        2, (38),(36)  

4.   a aj j      (RB)  

5.   ( )a a aj y j y        3,4, (A0)  

6.   ( ) ( )a a aj y j y       5, (A0)  
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( ) ( )R a a aj y j yº  
K

      (51) 

Proof: 

1.  ( ) ( )a a aj y j y       (RK)  

2.  ( ) ( ) ( )a a a aj y y j j y          1, (A0)  

3.  (( ) ( )) ( )a a aj y y j j y         2, (2)  

4.  ( ) ( )a a aj y j yº       3,(39)  

Analogously we prove in KR implication (RQ). 

( )R a aj j y  
P

     (52) 

Proof: 

1.  ( )a aj y j      (RG)  

2.  ( )a aj j y        1, (A0)  

3.  ( ) ( )a aj y j y          (RA)  

4.  ( )a aj j y        2, 3, (A0) 

5.  ( )a aj j y      4, (38)  

( )R a a aj y j y    º
P

      (53) 

Proof: 

1.  ( )a aj j y      (RI)  

2.  ( )a ay y j      (RI)  

3.  ( ) ( )a a a aj y j y y j            1, 2, (A0)  

4.  (( ) ( )) ( ) ( )a a aj y y j j y y j   º        (2) 

5.  (( ) ( ))a a aj y j y y j           3, 4, (A0)  

6.  ( )a a aj y j y    º     5, (39)  



ANNA MARIA KARCZEWSKA 380

5. SET-THEORETIC SEMANTICS 
FOR THE SYSTEMS ,BR  ,KR  ,PR  CR  

 Because the system KR  is equivalent to the system MR (section 4) its 
adequate semantics is the class of models fulfilling all conditions (13)–(27). 
On the other hand the systems ,BR  ,KR  PR  cannot be characterized with the 
use of a combination of the conditions (13)–(27) from section 3. It means 
that they are not equivalent to any purely distributional calculus. 

Theorem 3 No class of set-theoretic models determined by a certain set of 
conditions from among (13)—(27) defines BR , KR  nor PR . 

Proof If any class of set-theoretic models k  (meeting the specified condi-
tions) defined any of the systems BR , KR , PR , then the tautologies of the 
class k  would have to be all and only the theorems of that system. Let us 
consider then the schema (35), which is a theorem of all those systems. The 
schema (35) is tautological in a class of models k  if and only if k  jointly 
satisfies the conditions (13), (14), (15), (16) and (17). We shall see that it 
really is so.  

1. If the conditions (13), (14), (15), (16) and (17) are satisfied, then the 
connective of negation and conjunction correspond to operations -  and Ç . 
Then ( ) ( ( ))a j yÎ  d f  iff ( ) (( ))a j yÏ d f  iff ( ) ( )a jÏd f  or ( ) ( )a yÏd f  iff 
( ) ( )a jÎ d f  or ( ) ( )a yÎ d f  and any formula of schema (35) is true. 

2. If at least one of the conditions is not met, then (35) is not tautological. 
Since the connective   is fully distributive over the connective of con-
junction in all considered systems (that is due to the axiom (2)), only the 
conditions regarding negation will be dealt with. We shall assume throughout 
that all conditions (15), (16), (17) are met and omit the discussion of the 
cases of them being not satisfied. 

– Consider first the condition (13). If (13) holds, then ( ) ( ) =j jÇ  Æf f , for 
every quasi-formula j . Let us assume that (13) does not hold. Thus there 
exists a model such that for some u Î  , both ( ( ))u j yÎ  f  and 

( )u j yÎ f . By (15) and (16) we have ( )u jÎ f  and ( )u yÎ f . We may 
stipulate further that ( )u jÏ f  and ( )u yÎ f , and this constitutes a counter-
model to (35). 

– If, on the other hand, (14) does not hold, there exists a model such that for 
some quasi-formula j  it is not the case that ( ) ( ) =j jÇ f f  . Put then 
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( )u j yÏ f  and ( ( ))u j yÏ  f . By (15) and (16) we get ( )u jÏ f  or 
( )u yÏ f . Let moreover ( )u jÎ f  (or ,( )u yÎ f  which gives us a counter-

model to (35). 
 However, if both conditions (13), (14) required for the truth of the 

formulas (35) apply, then any formula of schema (1) is a tautology. Since in 
all systems BR , KR , PR  there exists a countermodel for (1) (see paragraph 4) 
and in consequence the schema cannot be a schema of the thesis it entails 
that none of the systems BR , KR , PR  can be both sound and complete with 
respect to set-theoretic semantics determined by the combination of the 
conditions (13)–(27).    QED 

Thus, in order to build an adequate set-theoretic semantics for the sys-
tems, additional conditions concerning the meaning of the propositional con-
nectives should be used. Let us note that any of the systems ,BR  ,KR  ,PR  CR  
extends a certain purely distributive system by the rules (36)–(39). 

Lemma 4  The system System BR  is equivalent to the system CDEFGH with 
the mutual interchange rules (36)–(39). 

Proof Implication schemata (RC), (RD), (RE) can easily be derived from 
axiom (2), proofs of implication (RF), (RG), (RH) in the systemRB  were 
given in the previous section. On the other hand distributive laws (2), (3) are 
the theses of CDEFGH with mutual interchange rules (36)–(39) (respectively 
from (RC), (RD), (RE) or (RF), (RG), (RH) and (A0)). From the last one the 
schema (35) is derived in the following way: 

  
1.   ( )a a aj y j y   º         (3)  

2.   ( )a a aj y j y    º         1, (37)  

3.   ( )a a aj y j y  º         2, (36)  

    QED 

Lemma 5  The system System KR  is equivalent to the system ACDEFGH 
with mutual interchange rules (36)–(39). 

Proof The lemma follows from lemma 4. It is sufficient to notice that the 
system KR  is an extension of the system BR  by schema (RA).   QED 

Lemma 6  The system System PR  is equivalent to the system BCDEFGH 
with mutual interchange rules (36)–(39). 
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Proof The lemma follows from lemma 4 for the system RP  is an extension 
of the system  BR  by the schema (RB).   QED 

Additionally we can formulate an analogous lemma concerning the sys-
tem CR . 

Lemma 7 The system System CR  is equivalent to the system ABCDEFGH with 
mutual interchange rules (36)–(39). 

It can now be seen that besides the appropriate conditions concerning the 
distributive laws (as presented in section 3), it is sufficient to accept the con-
ditions corresponding to the mutual interchange rules: 

( ) = ( ),j j*f f   (54a) 

where 

= ( )j j j j*     (54b) 

or = ( ( ))j j j y j y*        (54c) 
or = ( ( ))j j j y j y*       (54d) 
or = ( ( ) ( )).j j j y j y y j* º     (54e) 

The set-theoretic semantics for the systems will thus be defined by the 
following conditions:  

– BR : (15), (16), (17), (18), (19), (20), (5), 
– KR : (13), (15), (16), (17), (18), (19), (20), (5), 
– PR : (14), (15), (16), (17), (18), (19), (20), (5), 

– CR : (13), (14), (15), (16), (17), (18), (19), (20), (5), 

Theorem 8 (soundness) The systems BR , KR , PR , CR  are sound with respect to 
their set-theoretic semantics. 

Proof Regarding the system BR , let us note that the axioms (A0) are true in 
any model, and the rule (MP) inherits soundness, through the classical 
definitions of the truthfulness of compound formulas; conditions (15), (16), 
(17) jointly ensure that the axioms are tautologies (2). According to (5), 
quasi-formulas which are mutually replaceable under rules (36)–(39) have 
the same interpretation in the model, which, together with definition (7), 
guarantees, that the mutual interchange rules preserve truth. Also axioms 
(35) are tautologies of the class of models BR . If we assume, that 
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( )a j y M   , then ( ) ( ( ))a j yÎ  d f . From (54) ( ) ( ( )).a j yÎ    d f

From (55) ( ) ( )a j yÎ   d f . From (18), (19), (20) ( ) ( ) ( )a j yÎ  È d f f . 
Thus we have that a jM    or a yM   , so a aj y  M    . On the 
other hand under condition that ( )a j y M   , ( ) ( ( ))a j yÏ  d f  and, on 
the basis of transformations analogous the previous ones, we get 
( ) ( ) ( )a j yÏ  È d f f . Thus ( ) ( )a jÏ d f  and ( ) ( )a yÏ d f . Thus we have 

a jM    and a yM   , so a aj y  M    . 

The specific axioms of the systemsRK ,RP , that is respectively (RA) and 
(RB), are the tautologies of the respective classes of models through the 
applicability of the conditions (13) (in the first case) and (14) (in the other). 
The specific axioms of the system    CR —(1)—are tautologies through the 
conditions (13) i (14) taken together.    QED 

Theorem 9 (completeness) Each of the systems BR , KR , PR , CR  is complete 
with respect to its set-theoretic semantics. 

Proof Due to 4, 5 and 6, and Tkaczyk’s results concerning the adequate 
semantics of purely distributive systems CDEFGH, ACDEFGH, BCDEFGH, 
ABCDEFGH, it is sufficient to prove that any model determined by a Linden-
baum extension of a respective system, which is an extension of a purely 
distributive system, fulfills the conditions (54)–(57) corresponding to mutual 
interchange rules. 

Let L  be a Lindenbaum extension of any of the systems BR ,  KR , PR , .CR As-
sume that, for all ,a jÎ Î  , ( ) ( )a jÎd f  if and only if Raj LÎ . If 
j Î  , ( )jf  is given by the definition of Lindenbaum extension (i.e. a maxi-
mal consistent set). Assume that the theorem holds for a subset L*  of L .  

– According to (36)–(39), for every indicator a  and quasi-formula j , 
aj L*Î  iff aj L* Î , where j*  is the quasi-formula resulting from 

application of the mutual interchange rule to quasi-formula j . Thus for any 
indicator a , ( ) ( )a jÎd f  iff ( ) ( )a j*Îd f , so ( ) = ( )j j*f f  and conditions (54)–
(57) are satisfied. 

 For each formula A , if A  is not a thesis of any of the systems under 
consideration, then according to the Lindenbaum theorem, there exists a com-
plete and consistent extension of the system, such that A  does not belong to 
that extension, thus there exists a countermodel for A . That in turn is 
equivalent to the proven theorem.    QED 

Thus all matrix systems CR , BR , KR  and PR  have adequate Tkaczyk-style 
set-theoretic semantics. It seems that an analogous result can be obtained for 
any system between the systems Zero and A-Q. 
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SET-THEORETIC SEMANTICS 
FOR MANY-VALUED POSITIONAL CALCULI 

S u m m a r y  

The objective of this paper is to formulate adequate set theoretic semantics for Tkaczyk’s 
positional calculi ,RB ,RK  and PR  (TKACZYK 2007). 
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SEMANTYKA TEORIOMONOGOŚCIOWA 

DLA WIELOWARTOŚCIOWYCH RACHUNKÓW POZYCYJNYCH 
S t r e s z c z e n i e  

Celem artykułu jest zdefiniowanie adekwatnych semantyk teoriomonogościowych dla rachun-
ków pozycyjnych ,RB ,RK  and PR  (TKACZYK 2007). 

Słowa kluczowe: rachunki pozycyjne; macierz; semantyka teoriomnogościowa. 




