
ROCZNIKI FILOZOFICZNE
Tom LXVIII, numer 4 – 2020

DOI: https://doi.org/10.18290/rf20684-15 

DOMINIK KLEIN 
ONDREJ MAJER 
& SOROUSH RAFIEE RAD * 

NON-CLASSICAL PROBABILITIES FOR DECISION 
MAKING IN SITUATIONS OF UNCERTAINTY 

INTRODUCTION 

Classical probability gives a quantitative representation of uncertainty 
over a given space of available events. It assigns to each event a value in the 
interval [0,1]  interpreted as some agent’s subjective credence therein or, 
alternatively, its likelihood of occurrence. The space of events, here, is 
assumed to have an internal structure, where some events are simple and 
others compound. Overall, the different events can be arranged into a Boo-
lean algebra, a set-theoretical structure with union, intersection and com-
plementation. 

The probabilities that can be assigned to different events stand in various 
relations to each other. It seems incompatible, for instance, to assign a larger 
probability (or credence) to some specific event B  than to some more general 
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A  that encompasses B . The standard assumptions on probabilities are captur-
ed in Kolmogorov’s axioms (Kolmogorov). These are stated for probability 
functions, a normalized additive measure defined on a Boolean algebra F  of 
subsets1 of some set W , representing some agent’s subjective representation 
of the world. That is, a probability measure is a function : Fm    satisfying 
the three Kolmogorov’s axioms that for every ,A B FÎ   

1. ( ) 0Am ³  (non-negativity)  
2. ( ) = 1Wm  (normalization)  
3. ,( ) = ( ) ( )A B A Bm m mÈ + , for disjoint ,A B  (additivity)  
Similarly, probability measures can be defined syntactically, on a set of 

formulas of some (classical) propositional language L . In this perspective, 
a probability measure is a function :m    and the above axioms can be 
rephrased as (i) ( ) 0m j ³  (non-negativity), (ii) ( ) = 1m   (normalization), and 
(iii) ,( ) = ( ) ( )m j y m j m y +  for inconsistent f y  (additivity), which are to 
be accompanied by an additional axiom (iv) ( ) = ( )m j m y  whenever  .j y«  

Defined as such the classical probability has strong consistency and 
completeness assumptions built in. Using axioms above, it is not difficult to 
show for any sentence j Î   that, ( ) = 0P j j  , ( ) = 1P j j   and 

.( ) ( ) = 1P Pj j+   These mathematically desirable properties, however, come 
at a cost: by incorporating various normative coherence assumptions, clas-
sical probability becomes a less than optimal tool for representing quan-
titative uncertainty in non-idealised settings where evidence may be incom-
plete or partially faulty. When information is all too scarce, for instance, the 
resulting probabilities for the truth and falsity of some j  may add up to less 
than one. Likewise, an occasional piece of faulty input may lead to 
contradictory beliefs and thus, by composition, to ( ) > 0P j j  . 

The issue goes deeper than the definition of probability however. The 
underlying logic for classical probability theory is classical propositional 
logic which already assumes these consistency and completeness properties. 
Indeed, as is well-known, any inference in classical logic is trivialized when 
dealing with inconsistent premises. This stands in stark contrast to the fact 
that we can often draw at least some valid inferences from a body of par-
tially contradictory information. 

The adequacy of classical logic for modelling and analyzing information 
dynamics has been questioned for quite some time now, not only on the 
grounds of its inadequacy for dealing with inconsistencies. To date, a broad 
                        

1 For the sake of simplicity, we assume the state space W to be finite in this article. Without 
this assumption, the additivity axiom would need to be replaced by s -additivity. 
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variety of logical systems have been been put forward that extend or modify 
classical logic in order to reason with uncertain degrees of truth (PARIS 1994; 
FAGIN, HALPERN, and MEGIDDO 1990), incorporate epistemic notions that bear 
relevance to reasoning about others (VAN BENTHEM 2011; VAN DITMARSCH, VAN 

DER HOEK, and KOOI 2008; VAN BENTHEM, VAN EIJCK, and KOOI 2006), represent 
the dynamics of information (ALCHOURRÓN, GÄRDENFORS, and MAKINSON 1985; 
BALTAG, MOSS, and SOLECKI 1998; BALTAG, RENNE, and SMETS 2014; DARWICHE, 
PEARL 1997), or track various aspects of reasoning processes (BATENS 2001; 
ANDERSON, BELNAP 1975), to name but a few. 

Most relevant to our discussion here, are extensions that provide a non-
trivial treatment of inconsistencies (PRIEST, 2006, 2007; BELNAP 2019; DUNN 
1976; JAŚKOWSKI 1989; DA COSTA 1974; DA COSTA, and SUBRAHMANIAN 1989; 
RESCHER and MANOR 1970; BATENS 2001). By now, the literature on para-
consistent logical systems is extensive and contains many different concep-
tual and formal approaches to inconsistencies. Some of these treat inconsis-
tencies as inherent in reality, most notable in the work of Graham Priest 
(PRIEST 1979; 2006; 2007), while others view it as a result of information 
shortcomings of different kinds, see for example (BELNAP 1977; 2019; DUNN 
1976; JAŚKOWSKI 1969; DA COSTA 1974; RESCHER and MANOR 1970; BATENS 
2001; ANDERSON and BELNAP 1975). In this paper we will focus primarily on 
Belnap and Dunn’s view and their resulting logic, Belnap-Dunn logic or 
First Degree Entailment. By permitting information to be inconsistent or in-
complete, this logic track how and which inferences can be drawn from an 
imperfect body of evidence. 

Informational imperfections are, of course, not restricted to the case of 
categorial true-false information and deductive reasoning. Rather, similar issues 
of inconsistent, conflicting or incomplete inputs may also emerge when deal-
ing with probabilistic evidence. Information that stems from different sources 
might, for instance, indicate probabilities for j  and j  that add up to more, 
or less than 1. In the same way in which probability theory can be seen as an 
extension of classical logic to uncertain information, this calls for an exten-
sion of paraconsistent logic to a weaker than standard probability theory. 

In this paper we focus on a probabilistic extensions defined over Belnap-
Dunn logic. This paraconsistent logic is particularly suitable for analyzing 
less-than-ideal informational situations. Not only does it allow for handling 
of inconsistencies but it also relaxes the assumption of information com-
pleteness. More precisely in Belnap-Dunn logic f f   is no longer a logi-
cal validity. This allows for modelling not only the epistemic state of an 
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agent with contradictory evidence for both f  and ,f but also that of an 
agent with evidence neither for f  nor for .f  

There has been some recent works on non-standard probability that rest 
on Belnap-Dunn logic implicitly or explicitly (cf. CHILDERS, MAJER, and 
MILNE 2019; DUNN 2010; DUNN and KIEFER 2019; KLEIN, MAJER, and RAFIEE 
RAD 2020). Childers, Majer, and Milne (2019), for instance, obtain a non-
standard probability theory by relaxing some of Kolmogorov’s axioms. As 
we shall see in detail shortly, their approach weakens both the axioms for 
unity ( ( ) = 1P  ) and ( s )-additivity. A different proposal has been put 
forward by Dunn and Kiefer (2019). They define non-standard probabilities 
as a four valued assignments that associates to each proposition f  a norma-
lized vector ,4( , , , ) [0,1]b d u c Î  whose values correspond to “pure belief” (f  is 
true while f  is not), “pure disbelief” ( f  is true and f  is not), “un-
certainty” (neither f  nor f  are true), and “conflict” ( f  and f  are both 
true). Dunn’s proposal is studied in detail and extended in Klein, Majer, and 
Rafiee Rad (2020) where the setting is enriched with dynamical operations for 
conditionalization and aggregation to capture a process of probabilistic learn-
ing. Moreover, Klein, Majer, and Rafiee Rad (2020) show the non-standard 
probabilities à la Childers, Majer, and Milne (2019), and the four valued 
probabilities proposed by Dunn and Kiefer (2019) to be equivalent perspec-
tives on the same, and provide an explicit translation between the two. Using 
this, we shall focus here on the (single-valued) non-standard probabilities as 
defined in Childers, Majer, and Milne (2019). 

Notably, employing (non-classical) probabilities is not the only approach 
in the literature for dealing with imperfections in a quantitative representa-
tion of uncertainty. The most discussed formal systems in this area are inner 
and outer measures, lower and upper probabilities and Dempster-Shafer 
theory. Among these the last is particularly prominent, employing belief func-
tions to represent uncertainty within quantitative belief assignments (DEMP-
STER 1967; SHAFER 1976). In a certain technical sense it is also supposed to 
be the most general of the theories we mentioned (see e.g. HALPERN 2017). 
Dempster-Shafer theory has been developed as framework for a theory of 
evidence. In this setting, events (or propositions) are assigned values in [0,1]  
that express how much the event is supported by the available evidence. 
Within the DS-framework, evidence is assumed to be non-misleading and to 
follow some classic meta-theory. That is, the empty set of propositions 
receives a support of 0 while the set of all events is believed to a degree of 1. 
Evidence, however, may be partial in that the evidence implying some set U  
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and the evidential support for its complement may only be a small fraction 
of the overall evidence available to the agent. In this case, the corresponding 
belief function will satisfy .bel( ) bel( ) < 1U U+   Dempster-Shafer theory has 
been extensively analyzed as one of the main proposals for modelling 
epistemic uncertainty. See for instance (HALPERN 2017) for an extensive 
introduction. 

The goal of this paper is to provide a comparison between Dempster-
Shafer’s theory as the most general and most prominent framework for 
dealing with imperfect information and non-standard probabilities2 in terms 
of their perspectives on informational imperfections. Another reason that 
makes this comparison relevant is the strong connection between informa-
tion imperfections and evidence. Incomplete and inconsistent evidence ga-
thered from conflicting sources are some of the main contributers to infor-
mation imperfections that agents should deal with when forming belief. Hence, 
it seems a natural task to compare setting that allow for agents to form 
beliefs based on imperfect information with the  main theory of evidence 
available in the literature.  

In this comparison, we are in particular interested in two questions. The 
first is to compare the two approaches in terms of their generality. More spe-
cifically we ask whether one is more general than the other, whether there is 
a (partial) correspondence between the two or whether (and under what con-
ditions) either of these approaches can be seen as a special case of the other. 
To subsume, we are interested whether or not (and under what conditions) 
a non-standard probability function can be interpreted as a Dempster-Shafer 
belief function and vice versa. Second, we wish to extend our comparison of 
both approaches to dynamics and their respective mechanisms for learning 
and information change. For either of the two approaches dynamic rules 
have been proposed that are claimed to generalize classic probability’s 
Bayes update (cf. SHAFER 1976; FAGIN and HALPERN 1990 for Dempster-
Shafer theory and JØSANG 1997; KLEIN, MAJER, and RAFIEE RAD 2020 for the 
non-standard case). We ask how these rules compare to each other and whe-
ther they are compatible with any (partial) correspondence to be found in 
reply to the first question. 

The paper is organized as follows. In section 1 we provide brief intro-
ductions to Dempster-Shafer theory (section 1.1) and non-standard pro-
bability theory (Section 1.2.2). In Section 2 we then analyze the relationship 

                        
2 Or, by the translation in KLEIN, MAJER and RAFIEE RAD 2020, the four-valued probabilities. 
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between the two frameworks. While we show the two frameworks to be 
orthogonal, strictly speaking, (Section 2.1), we also identify a partial bridge 
between them in Section 2.2. With the help of this partial bridge, we then 
compare various dynamic rules for the frameworks that are all intended to 
generalize Bayes in Section 3 before concluding. 

1. PRELIMINARIES 

To begin with, we rehearse the basics of Dempster-Shafer theory and 
non-standard probability theory. Here, we focus on the basics needed for our 
analysis. For a more complete introduction, we refer the reader to Dempster 
(1967) and Halpern (2017) for Dempster-Shafer theory and Klein, Majer, 
and Rafiee Rad (2020) for non-standard probability theory. 

1.1  DEMPSTER-SHAFER THEORY 

Originally, Dempster-Shafer (DS) theory has been developed as a theory 
of evidence-based belief. More specifically, the DS belief in some event is 
derived form the agent’s evidential support for various propositions. In this 
setting, evidential support for some proposition U  tracks the amount of evi-
dence for precisely U . That is, the support of U  reflects all the evidence that 
support U , but no proposition stronger than U . The evidential support for 
some U  is, in particular, completely independent of the evidential support 
for any event V  that implies U , i.e. .V UÍ  An agent’s belief, on the other 
hand, builds on logical entailment among various propositions. More con-
cretely, the agents belief in some U  is calculated from her evidential support 
for all propositions V  that logically entail U . 

Take for example the DS degree of belief about the colour of an observed 
object. The degree of belief that the object is either blue or green depends on 
the evidence that support exactly the assertion that the object is either blue 
or green together with the evidence that support the object being either only 
blue or only green. The agents beliefs that the object is blue (resp. green), on 
the other hand, only depend on the respective evidential supports for the 
objects being blue (resp. green). Thus, the agent’s belief that an object is 
“either blue or green” can be higher than the sum of her beliefs in the object 
being “blue” and “green,” as the former rests on all the evidence contained 
in the latter, as well as on additional evidence for the object being “blue or 
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green.” More specifically, as soon as the agent is exposed to some piece of 
(exact) evidence for the object being “blue or green,” her belief in the dis-
junction will be higher than the sum of beliefs in the disjuncts. Formally, 
a DS belief function captures the amount of available evidence by means of 
a mass function m . Belief is then defined with recourse to this mass function. 
Definition 1 Let W  be a set (of alternatives) and ( )W  the set of events 
over W .  
(i) A Dempster-Shafer model is a tuple ( , )W m  where : ( ) [0,1]m W   such 

that (i) ( ) = 0m Æ , and (ii) .( ) = 1
A W

m A
Íå  

Intuitively, m  is a mass function which assigns to every event (or pro-
position) A WÍ  the weight of evidence which supports exactly ,A  i.e A  
and no subset of A .  
(ii) Every DS model induces a belief function bel : ( ) [0,1]W   

bel( ) := ( )
A A

A m A
¢Í

¢å  

The belief function of a DS model represents the belief warranted in the 
various subsets of W , say A , in light of the available evidence. This belief 
is equated to the total evidential support for this A , i.e. the sum of eviden-
tial supports for all subsets of A . In the above definition, a DS belief func-
tion is a mapping from the Boolean algebra of subsets3 of some set W  to the 
interval [0,1]  that is characterized by the following axioms:  

 ) bel( ) = 0 ) bel( ) = 1i ii WÆ  

 | | 1
1

{1 }

) bel( ) ( 1) bel( )I
n i I i

I n

iii A A A+
Î

Í

È È ³ - Çå


  

Dempster-Shafer theory can be seen as a generalization of Bayesian 
framework of subjective belief. In fact, a DS-belief function is a probability 
measure if and only if each piece of evidence supports a singleton x WÎ , 
i.e. the underlying mass function satisfies ( ) = 0m X  whenever X WÍ  is 
not a singleton. A crucial aspect of such theories, both conceptually and 
formally, is the concept of conditionalization (HARTMANN and SPRENGER 
2019). For its main part, conditionalization extend the scope of the theory 
from being a static representation of uncertainty to a dynamic one by pro-

                        
3 Generalizations exists that, for instance, work on distributive lattices rather than algebras of 

sets – see ZHOU 2013. 
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viding a mechanism for the incorporation of new evidence. This addition is 
crucial for analyzing information dynamics and its related uncertainties, 
thereby extending the realm of possible applications of the theory. Often, it 
is not only the agents’ static epistemic states that are of interest, but various 
of their dynamic properties, such as which information may have lead to an 
agents’ current beliefs, how various actual or potential observations should 
impact our credences or where beliefs converge to in the long run. All these 
topics are essentially dynamic, requiring a formal tool for predicting and 
assessing the effects of informational updates. 

We will not delve into a detailed representation of DS theory and its 
ramifications here. Besides the absolute basics just introduced, we shall restrict 
ourselves to presenting two notions of conditionalization for DS belief functions 
that have been proposed in the literature. However, we will postpone this to 
Section 3, where we compare these two dynamics on DS belief functions with 
a version of Bayes updating defined on non-standard probabilities. 

1.2  NON-STANDARD PROBABILITIES 

There is a second, logic based approach for representing quantitive 
beliefs that supervene on possibly imperfect information. In a nutshell, the 
idea of these non-standard probability functions is as follows. At the outset, 
the structure of belief under sub-ideal information is discussed when all 
available information and their effects are extremal, i.e. assume the value 0 
or 1. For classic probability theory, the restrictions to such extremal values 
yields a classic propositional logic. The transition from idealized classic to 
sub-ideal accounts of input information, will thus yield a weakening of pro-
positional logic. In Section 1.2.1, we introduce a particularly prominent 
weakening of propositional logic, Belnap-Dunn logic, that has been specifi-
cally designed to capture cases of incomplete and inconsistent information. 
In the section thereafter, 1.2.2, we present recent approaches for generalizing 
Belnap-Dunn logic to the non-extremal values, i.e. to define real-valued pro-
bability functions whose restrictions to their extremal values (i.e. their under-
lying logic) yields Belnap-Dunn logic. 

1.2.1  Belnap-Dunn logic 

By now, there is a large number of proposals for paraconsistent logics, 
i.e. logics where local contradictions do not trigger trivialization. Among 
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these is Belnap-Dunn logic (BD-logic, also referred to as First Degree 
Entailment) that was specifically designed for dealing with inferences from 
(possibly) incomplete and inconsistent information, as can be found for 
instance in databases. This is accomplished by extending the set of truth 
values. In BD a formula might not only be true ( t ) or false ( f ) as in the 
classical case, but can also be neither (n ) or both (b ) of these, where b  and 
n  correspond to inconsistent and incomplete information respectively.4 

An alternative to four valued semantics for DB logic consists in a double 
valuation approach. While employing the classic set of truth values { , }t f , 
this formulation builds on the assumption that positive and negative evi-
dence are distinct. That is, the absence of positive evidence for some p  is 
not the same as negative evidence for p  (or positive evidence for p , if you 
will). In fact, both are completely independent. That is, there may be gaps, 
where neither evidence for p  nor against p  is available, and gluts, where 
evidence of both is present. Consequently, positive and negative evidence 
require a separate treatment. This is achieved by duplicating the valuation 
function. Instead of a single valuation function telling us which atomic pro-
positions are true and which false, we have to work with two valuation func-
tions — the positive one telling us for which atomic propositions we have 
positive evidence and a negative one corresponding to available evidence 
against atomic propositions. 

Independent of the semantic approach, the language   of BD logic is 
generated by , ,    from a finite set of atomic letters At . We will denote the 
set of literals over At  by Lit , i.e. .Lit := At { | At}p pÈ  Î  In this paper, we 
will focus on a semantic perspective of BD-logic. That is, instead of pro-
viding a syntactic entailment relation, we define a set of models and derive 
semantic entailment relations   over these. As positive and negative evi-
dence for (atomic) propositions are assumed independent, models of BD -
logic require two separate valuation functions v+  and v-  for positive and 
negative evidence respectively. 
Definition 2 A non-standard model is a triple = , ,v v+ -áS ñ  where S  is 
a finite or countably infinite set of states and , : At {0,1}v v+ - S´   are the 
positive and negative valuation function respectively. For Atp Î  we let 

.( ) = { | ( , ) = 1}v p s v s p Î S   

                        
4 For our purpose, the reading of truth values is not metaphysical as e.g. in dialethism. Rather, 

they are interpreted with respect to the available information. Or, as Belnap puts it “True” is to be 
read as “Told true”. 
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With this definition, a state s  of a model   might be non-classic. That 
is, it can be assigned an inconsistent set of propositions ( ( ) ( )s v p v p+ -Î Ç  
for some p PropÎ ), or might be incomplete with respect to other pro-
positions ( ( ) ( )s v q v q+ -Î È  for some q PropÎ ). While positive and negative 
valuations are defined on atoms only, they can be extended to compound 
formulas in a way that is borrowed from classical logic – a state supports 
conjunction positively if it positively supports both conjuncts and supports it 
negatively if it negatively supports either. Formally, this is made precise by 
positive and negative support relations +  and - .  
Definition 3 Let = , ,v v+ -áS ñ  be a non-standard model, s Î S  a state and 

,j y Î   formulas. Then the semantics of   is given by:  
iff ( ) iff ( )s p s v p s p s v p+ + - -Î Î   

iff and , iff ors s s s s sj y j y j y j y+ + + - - -         
iff iffs s s sj j j j+ - - +      

 
Building on this semantics, we obtain the notions of positive and negative 

extensions. The positive extension of a formula j Î   is the set of states 
positively supporting it, ,| | = { | , }s sj j+ +Î S    and its negative extension 
is | | = { | , }s sj j- -Î S   . Observe that positive and negative extensions 
are inter-definable via negation: | | = { | , } =| |s sj j j- + +Î S     . Thus it 
is sufficient to work with positive extensions only. Entailment relation be-
tween sentences are defined in the usual way: f y+  if and only if for all 
models   and states s , if ,s f+   then ,s y+  , likewise for .f y-  

We end this section by noting a fact that we will need later: Belnap-Dunn 
logic has no tautologies, but the top-element of its Lindenbaum algebra is 

Lita
a

Î , i.e. 
\Lita

aj
Î

 v  for all .j  

1.2.2  Probabilities over Belnap-Dunn logic 

Now, we are in a position to introduce probabilities over Belnap-Dunn 
logic. To do so, we will assume the non-standard models defined above to be 
equipped with a (classical) probability measure m  defined on the powerset 
of the set of states S . Just as in the classical case, the non-standard pro-
bability of a formula j  will be defined as the probability given by m  to 
states that positively support it. Notice that these are the states in which j  is 
at least true, since a state might simultaneously also positively support j . 
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Definition 4 A probabilistic model is a tuple = , , ,v v m+ -áS ñ  where 
, ,v v+ -áS ñ  is a non-standard model and m  is a (classical) probability measure 

on the full subset algebra of .S  The non-standard probability function 
:P+     induced by m  is:  

 ( ) = (| | )P j m j+ +
   

Analogously, we could define the negative probability of some .j  
However, due to the interdefinability of positive and negative support, 
| | =| |j j- +  , this is not necessary. By the same reasoning, we will omit 
the subscript +  when talking about probability. It can be checked that for 
every probabilistic model ,= , , ,v v m+ -áS ñ  the corresponding non-standard 
probability function P  satisfies the following axioms.  

 
(A1)  0 ( ) 1P j£ £   (normalization) 
(A2)  if Lj y  then ( ) ( )P Pj y£  (monotonicity) 
(A3)  ( ) ( ) = ( ) ( )P P P Pj y j y j y +  +  (inclusion/exclusion) 

 
where L  in (A2) is the entailment relation of Belnap-Dunn logic defined 
above. In fact, these axioms are sound and complete with respect to the class 
of probabilistic models defined above (KLEIN, MAJER, and RAFIEE RAD 2020). 
Thus, we call a function :p    satisfying (A1)-(A3) a non-standard 
probability assignment. Notably, the axioms for non-standard probability are 
strictly weaker than Kolmogorov’s. Axioms (A1)-(A3) can be derived from 
the Kolmogorov axioms. This follows from the fact that first degree 
entailment is a sub-relation of classical entailment (KLEIN, MAJER, and RA-
FIEE RAD 2020). In the other direction, however, we can only get the non-
negativity axiom ( ( ) 0P j ³  for all j ) from (A1). Neither the unit axiom 
( ( ) = 1)P   nor the ( s )-additivity axioms can be derived from (A1)-(A3). To 
see this notice that assigning probability .5 to all formula satisfies axioms 
(A1)-(A3). 

Notably, the probabilities of j  and j  need not sum up to 1 in this 
setup. The only constrain on the relation between the probability of a for-
mula and its negation is given by the inclusion-exclusion rule(A3):  

 ( ) ( ) = ( ) ( )P P P Pj j j j j j  +   +   
which allows for both (probabilistic) gaps ( ( ) < 1)P j j   and gluts 

.( ( ) > 0)P j j   
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To end this section, we define a special class of probabilistic models 
called canonical models. We will need these later, for producing a partial 
bridge result between DS theory and non-standard probability.5 
Definition 5 )i  A canonical probabilistic model is a probabilistic model 

= ( ), ,Lit v v m+ -á ñ   such that ( , ) = 1v s p+  iff p sÎ  and ( , ) = 1v s p-  iff 
.p s Î  

 )ii  can  is the set of canonical probabilistic models.  
One reason for calling these models canonical is that there is a tight rela-

tionship between canonical probabilistic models and non-standard probability 
assignments (and thus also the non-standard probability functions derived 
from probabilistic models). 
Theorem 1 (Theorem 4 of of KLEIN, MAJER, and RAFIEE RAD 2020) The 
function f  from can  to the set of all non-standard probability assignments 
on   mapping a canonical probabilistic model   to P  is a bijection.  

In other words. We can represent each non-standard probability assign-
ment uniquely with a corresponding canonical probabilistic model. We will 
make heavy use of this later. 

2. DEMPSTER-SHAFER THEORY 
AND NON-STANDARD PROBABILITIES 

In this section, we initiate a comparison between Dempster-Shafer Theory 
and non-standard belief functions. As it will turn out, they model different 
aspects of evidential incompleteness or incoherence. 

To begin with, we note that Dempster Shafer Theory allows for belief 
gaps, i.e. cases where ( ) ( ) < 1bel A bel A+  . However, it does not allow for 
gluts, i.e. for cases where ( ) > 0bel A A   or ( ) ( ) > 1bel A bel A+  . To see the 
latter, note that for all B AÍ , B WÍ  and similarly for all B AÍ  , .B WÍ  
We then obtain  

 1 = bel( ) = ( ) ( ) ( ) bel( ) bel( )
B W B A B A

W m B m B m B A A
¢Í Í Í

¢³ + ³ + å å å  

This implies that DS theory can handle situations of incomplete infor-
mation but is unsuitable for situations of inconsistent evidence. In this sense 
                        

5 This definition is a slight simplification from the one presented in (KLEIN, MAJER, and 
RAFIEE RAD 2020). 
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non-standard probabilities are more general from the outset. Moreover, non-
standard probabilities also allow for more general types of gaps than DS 
theory does. In the latter, agents cannot be less than fully certain about 
classical tautologies, that is bel( ) = 1j  whenever j  is a tautology of clas-
sical logic. Non-standard probabilities, in contrast, allow for such uncertainty. 
In the extreme case, the non-standard belief function of maximal uncertainty 
sets ( ) = 0P j  for every j Î  . An immediate consequence of this is that 
Dempster-Shafer belief functions are not more general than non-standard 
probabilities. 

However, it is also not true that non-standard probabilities are strictly 
more general than DS belief functions. Rather, Dempster-Shafter theory 
allows for gluts of the form bel( ) bel( ) < bel( ).A B A B+   Intuitively, these 
are cases where the agent has a reliable information that A B , while only 
having weak information for either disjunct. In our example above, this re-
flects a case where some of the agent’s available evidence is that the object 
observed was ‘blue or green”, without specifying with of these two was the 
case. Notably, such a situation cannot occur within non-standard belief 
functions, as the inequality ( ) ( ) < ( )P A P B P A B+   violates the import-
export rule (A3). Hence, non-standard belief functions are not more general 
than DS theory either. 

2.1 AN ORTHOGONALITY RESULT 

In a certain sense, this discrepancy mirrors different motivations under-
lying DS theory and non-standard belief functions. In DS theory, there are 
no morphological limitations to the available evidence. That is, the agent 
may have evidence about some atomic { }w WÎ , but also about some more 
complex set .A WÍ  While these pieces of evidence are assumed compatible, 
they may be incomplete — and DS theory mirrors this incompleteness. In 
fact, DS theory is specifically targeted at cases where agents receive some 
imprecise evidence that points to some A  without implying any of the atoms 
in A . For it is only when such evidence exists, i.e. when ( ) > 0m A  for some 
non-singleton ,A WÍ  that DS-belief violates the axioms of classic probab-
ility theory. 

In non-standard probability functions, on the other hand, the main evi-
dence available to agents concerns atomic propositions p  or p  and con-
junctions thereof. It is this information alone that determines the measure m  
in a (canonic) probabilistic model. Information about any logically more 
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complex propositions can then be derived from this simple information, as it 
can be read off from the corresponding canonical model. The agents’ avail-
able evidence on literals, however, may not only be incomplete but also 
inconsistent, as witnessed by allowing for gaps and gluts. 

Besides their informal differences in approach, we can also formally 
show DS theory and non-standard probability functions to be orthogonal per-
spectives. For the following theorem, recall that DS theory must assign be-
lief one to classical tautologies and zero to classical contradictions. 
Theorem 2 Assume that At  is finite and that a non-standard belief function 
P  satisfied ( ) = 1P j  for all classical tautologies and ( ) = 0P j  to all clas-
sical contradictions. Then P  is a classical probability function.  
Proof. Kolmogorov’s non-negativity axiom already holds for non-standard 
probability functions. His normalization axiom, that ( ) = 1P j  for any 
tautology holds by assumption. As   is finite, s -additivity is the same as 
finite additivity. For this, it suffices that ( ) ( ) = ( )P P Pj y j y+   whenever 
j  and y  are mutually exclusive in classical logic. This follows from the 
import export rule, ( ) ( ) = ( ) ( )P P P Pj y j y j y+  +   together with the fact 
that ,( ) = 0P j y as j y  is a classical contradiction.  

Theorem 2 entails that (non-probabilistic) beliefs expressed in terms of 
DS theory and non-standard probabilities can not be translated into each 
other. The question remains whether we can elicit some weaker relationship 
between the two frameworks such as a partial translation function that at 
least connects a subset of the agent’s belief to a subset of her non-standard 
probabilities. In doing so, we are especially interested whether the learning 
mechanisms induced by various conditioning policies for DS-functions 
(FAGIN and HALPERN 1990) and non-standard probability functions (KLEIN, 
MAJER, and RAFIEE RAD 2020, Section 7) cohere. We start by defining a par-
tial correspondence between the two frameworks. 

2.2  JOINT SEMANTICS AND A PARTIAL BRIDGE 

Despite their incompatibility (cf. Theorem 2) we want to establish at least 
a partial bridges between DS Theory and non-standard probabilities. To do 
so, we identify special cases where DS belief is the same as non-standard 
probability for a large class of formulas. The construction to come largely 
builds on the semantics for non-standard probability and Dempster-Shafer 
theory given in Sections 1.1 and 1.2.2 and in particular on Definitions 1 for 
DS theory and Definition 5 for non-standard probability. In the remainder of 
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this section, we will define a correspondence map between a certain class of 
canonical probabilistic models and models for DS theory. In the next section 
we will then use this map to compare various information updates on either 
framework that are all generalizations of Bayes’ udpate. 

In constructing a partial semantic bridge between the two frameworks, we 
capitalize on the observations made in the previous section. Firstly, we have 
seen that DS Theory requires beliefs to be non-contradictory. Moreover the 
requirement of bel( ) = 1W  rules out uncertainty about classical tautologies. 
Likewise, classical contradictions must receive a weight of zero. We can 
translate these properties into additional requirements on non-standard belief 
functions and their corresponding canonical probabilistic models (by means 
of Theorem 1). 
Lemma 1 Let : [0;1]P   be a non-standard belief function and 

= (Lit), , ,v v m+ -á ñ   be the canonical probabilistic model such that 
=P P . Then  
)i  P  assigns zero weight to any classical contradiction iff ( ) = 0xm  for 

all (Lit)x Î   that contain both q  and q  for some .Atq Î   
)ii  

Lit
( ) = 1
a

P a
Î  iff 6 ( ) = 0m Æ   

Proof. )i  We start with the left to right part. Recall that in the canonical 
probabilistic model = (Lit), , ,v v m+ -á ñ  , the measure m  is a classical pro-
bability function over (Lit) . Towards a contradiction, assume that m  
assigns positive weight to some (Lit)x Î   that contain both q  and q  for 
some Atq Î . Then for such x , we have  

( ) = ( ) = ( ) ( ) > 0.
x yl x l x

P l P l y xm m
ÍÎ Î

³å   

However, the formula 
l x
l

Î  is a conjunction containing q q   and 
therefore a classic contradiction. Thus, p  assigns positive weight to a clas-
sical contradiction which gives the required contradiction. For the converse 
direction we use the following well-known fact 
Fact 1 If j  is a classical contradiction and y  is not then .Ly j  
Let j  be a classical contradiction. Using the above fact and the definition of 
the valuation, we have  

                        
6 Note that Æ  here stands for the empty subset of Lit , as a state of  .  
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{ (Lit)| : , }{ (Lit)| }

( ) = ( ) ( ) = 0,
x p At p p xx p

L
p x

P x x
j

j m m
Î $ Î  ÎÎ

Î

£å å



 

 

which gives the left hand side as required.  
For )ii  First remember that Belnap-Dunn logic has no tautologies, but the 

top-element of its Lindenbaum algebra is 
a Lit
a

Î . Thus for Litx Í  non-

empty we have that 
LitLl x a

l a
Î Î  . Hence, by the definition of canonical 

probabilistic models,  

Lit,Lit

( ) = ( ).
x xa

P a xm
Í ¹ÆÎ
å  

The right hand side is one exactly if ( ) = 0m Æ .  
Building on the insights from Lemma 1, we define. 
Definition 6 A canonical probabilistic model = (Lit), , ,v v m+ -á ñ   is glut 
free iff ( ) = 0xm  for all (Lit)x Î   that contain both q  and q  for some 

Atq Î . Moreover,   is normal iff it is glut free and satisfies ( ) = 0m Æ .  
On the class of normal models we can establish a relation to Dempster-

Shafer theory. To do so, we will define a partial map i  from the class of nor-
mal probabilistic models to DS models and show that for many formulas j , 
the non-standard probability ( )P j  is the same as bel( )j  calculated in ( )i  . 

To define this map i , let Val  be the set of valuations over At , i.e.  
 = { Lit | At : }.Val x p p x p xÍ " Î Î   Î  
We will define DS models over = ValW . That is, each DS model will be 

of the form (Val, )m , where : (Val) [0,1]m   is a mass function satisfying 
(Val)

( ) = 1
x

m x
Îå 

 and ( ) = 0m Æ . Before we proceed, note that the induced 

 belief function bel  then assigns a belief to each subset A  of Val . 
Representing ValA Í  as 

x A l x
l

Î Î  , we can identify each A ValÍ  with a cor-
responding formula. A fortiori, every formula in   is (classically) logically 
equivalent to a formula of the form 

x B l x
l

Î Î   where .LitB Í  Hence, every DS-
belief function over Val  can be identified with a DS -belief function over .  

We now construct the map i  that is defined on the class of normal cano-
nical models. 
Definition 7 For a normal canonical model = ( ), ,Lit v v m+ -á ñ  , the DS-
model *( ) = ( , ( ))Vali i   is defined as  
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*
( ) iff there is a (unique) Lit with

( )( ) =
0 else

l y x A l x

y y l l
A

m
i Î Î Î

ìï Í «ïïïíïïïïî

  
  

In other words, ({ })m x  for Valx Î  is the same as ( )xm  (exploiting 
normality and that LitVal Í ), while ({ Lit | , }m x p q xÍ Î  is the same as 

( )p qm   . Note that the definition implies that *( )( ) = 0Ai   whenever A  
is not of the form { | }x Val y xÎ Í  for some Lity Í . 

As m  was a probability function, ( ) = 0m Æ  and ( ) = 0xm  whenenver 

l x
l

Î  is a classic contradiction, we obtain the following fact  

Fact 2 For each x LitÍ  with ( ) > 0xm , there is a unique ValA Í , defined 
by := { Val | }A y x yÎ Í  with ( ) = ( )x m Am .  

As m  was a probability function, this implies that *( )i   is a DS mass 
function on Val . That is, *( ) = (Val, ( ))i i   is indeed a DS model. We 
denote the corresponding belief function by ( )beli  . After these prelimi-
naries, we are now in a position to state our central connection result. 

Theorem 3 Let = , , ,v v m+ -á ñå  be a normal canonical model and 
*( ) = (Val, ( ))i i   be its corresponding Dempster-Shafer model. Then for 

any j Î   that is a conjunction of literals, ( )( ) = bel ( )P ij j    

In other words, the function i  establishes a partial connection between 
non-standard probability functions and belief functions: the probability of 
a conjunction of literals j  is the same as the belief in j  in the DS model 
obtained from i  as above. 
Proof. First, note that for any Lity Î  and any j  that is a conjunction of 
a set of literals ( )L j , we have  

( )L
l y

l L yj j
Î

 Í   

Thus, for probabilities, we have that  

( )

( ) = ( ).
y L

P y
j

j m
Ê
å  

Likewise, we have for any valuation v ValÎ  that v j  iff ( )L vj Í . 
Thus, in ( )i  , we have  
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*
( )

{ Val| : }

bel ( ) = ( )( ).
X x X x A

Xi j i
Í " Î Ê

å   

By the construction of ( )i  , we have  

,*

{ Val| }

( )( ) = ( )
X x Xx A y A

X yi m
Í " Î Ê Ê

å å  

finishing the proof.  
It is important to note that we cannot hope for a stronger correlation 

between the two frameworks. By Theorem 2, the functions P  and ( )beli   
can only coincide on all formulas when P  is a classic belief function. This, 
in turn, is the case iff ( ) = 0xm  whenever .Valx Î  

Nevertheless, we will employ the partial correspondence function i  for a cau-
tious comparison of the two framework in terms of the update dynamics 
induced by different conditionaliziation strategies. 

3. DYNAMICS OF LEARNING: 
NON-STANDARD PROBABILITIES VS DS MODELS 

When interpreting the non-standard probabilities introduced in the pre-
vious sections as some agent’s (non-standard) degrees of information-based 
belief, a natural next step is to inquire into belief dynamics. That is, we may 
ask how agents should ideally update their information upon receiving new 
information. 

Incorporating new information has emerged as a central topic within 
a wide range of disciplines. It is, for instance, at the core of Bayesian epi-
stemology and by extension Bayesian statistics and Bayesian inference. It 
also constitutes significant portions of the current literature on Belief Revi-
sion (ALCHOURRÓN, GÄRDENFORS, and MAKINSO. 1985; KATSUNO and MENDEL-
ZON 1991), Decision Theory (KLEIN, MARX, and SCHELLER 2018), Social Choice 
Theory or expert systems. Moreover, information updates also play a crucial 
role in AI and design and analysis of efficient machine learning algorithms 
(BUSH and MOSTELLER 1955; EREV and ROTH 1998). Although there is a vast 
amount of literature on these topics, the core of Bayesian learning is a simple 
rule from classical probability theory — Bayesian conditioning. 

Classical Bayesian learning concerns a scenario where an agent learns 
that some proposition j  she was uncertain about (her subjective belief was 
strictly between 0 and 1) holds in fact true. After receiving this information 
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the agent obviously has to assign probability one to j . On top, learning that 
j  may have implications for other probability judgments, so she has to 
recalculate all remaining probabilities accordingly. 

Semantically we can see this situation as one of changing the distribution 
of probability measure between | |j  and | |j . That is to change the 
distribution of probability between the set of j -worlds and non-j  worlds 
(which determine a binary partition of the set of possible worlds), cf. Figure 
1. After learning that j  is true the agent changes the old probability (| |)m j  
of the partition | |j  to an updated probability (| |) = 1m j¢  and the pro-
bability of the partition | |j  to 0. Naturally, it follows that the probability 
of any subset of | |j , i.e. any intersection between | |j  and some | |y  is 
also zero. Hence, for each proposition ,y only the part of its extension | |y  
that intersects | |j , i.e. | |y j  maintains a positive probability after the 
update. These updated values are then normalized to obtain the updated pro-
bability function. Formally, this is specified by the formula 

 
Figure 1. Classic Conditioning 

,(| |)
(| |) =

(| |)

m y j
m y

m j
¢  

where m¢  is the updated measure after learning that j . 
Bayes conditioning, however, is limited in the sense that it allows only 

for learning of certain types of information. In some situations an agent 
might not learn f  for certain, but only a new (presumably more accurate) 
estimation for its probability, say ( ) = qm f¢ . This is addressed by Jeffery 
conditionalization, a generalization of Bayesian conditioning. In this case, 
the agent dos not simply throw away the partition | |f  be reducing its pro-
bability to zero. Instead she has to expand or contract the original measure 
m  proportionally on | |f  and | |f  in a way that (| |) = qm f¢  and 

.(| |) = 1 qm f¢  - We hence get for any formula y Î  :  
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1
( ) = (| |) (| |) .

(| |) (| |)

q q
m y m y f m y f

m f m f
-¢  +  


 

In the case of learning the new information with certainty (i.e. = 1q ), 
Jeffrey updating reduces to the formula for Bayes’ conditioning. 

Just as within the classical setting, the question on how to incorporate the 
new information that j  can also be asked with respect to the weakened 
frameworks discussed here, non-standard probability theory and Dempster-
Shafer belief functions. In the present section, we compare these two 
frameworks with respect to their learning and updating rules. In doing so, we 
restrict ourselves to counterparts of Bayes updating, i.e. to situations where 
j  is learned for certain. 

Klein, Majer, and Rafiee Rad (2020) provide a detailed study of conditio-
nalization for non-standard probabilities. There, conditionalization of non-
standard probabilities is approached by generalizing Jeffery conditioning to 
the non-standard setting, from which Bayesian conditionalization can be 
defined as a special case. In fact, the generalization of Jeffrey conditioning 
does not turn out unique. There are two natural generalizations of Jeffrey 
updating that give rise to five different notions of Bayes update. For the 
discussion to follow, we briefly introduce what are arguably the most 
straightforward generalizations of Jeffrey update and Bayes conditioning. 

Consider an agent in a non-standard probabilistic framework who learns 
a new probability, say [0,1]q Î , for some j  (whose prior probability was in 
(0,1) ). Importantly, setting the posterior probability of f  to be q  does not 
carry any implications regarding the probability of f  within our non-
standard framework. For instance, the agent may or may not decide to leave 

( )P j  unchanged in her update. 
Let us first consider non-standard Jeffrey updating semantically. For any 

f Î  , we can dissect the state space of a probabilistic model 
= , , ,v vm + -áS ñ  into two sets – the truth set | |j  of j  and it’s complement 

\ | |jS . Unlike in the classic case, however, \ | |jS  is not the truth set of 
| |j  – nor of any other formula. Following the intuition for classical case, 
the non-standard Jeffrey updating is defined as follows. 
Definition 8 Let = , , ,v v m+ -áS ñ  be a probabilistic model and let [0,1]q Î  
and j Î   such that (| |) (0,1)m j Î . Then the semantic non-standard Jeffrey 
update of   for updating the probability of j  to q  is the probabilistic 
model , ,= , , ,q qv vj jm+ -áS ñ  determined by:  
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,
({ }) iff [ ]

([ ])({ }) =
1

({ }) else.
1 ([ ])

q

q
x x

x
q

x

j
m j

m jm
m

m j

ìïï ⋅ Îïïïíï -ï ⋅ïï -ïî

 

It is easy to check that non-standard Jeffrey updating is successful. That 
is for any probabilistic model = , , ,v v m+ -áS ñ , j Î   and [0,1]q Î  with 

(| |) 0m j ¹  the updated model ,qj  satisfies , ( )([ ]) =q x qjm j . 
As detailed in Klein, Majer, and Rafiee Rad (2020), non-standard Jeffrey-

updating can be defined purely syntactically. 
Definition 9 Let :p    be a non-standard probability assignment, let 

[0;1]q Î  and j Î   with ( ) (0;1)P j Î . Then the syntactic non-standard Jef-
frey update setting the probability of j  to q  is the probability function 

, :qPj    defined by  
, 1
( ) = ( ) ( ( ) ( ))

( ) 1 ( )
q q q

P P P P
P P

j y y j y y j
j j

-
 ⋅ + - 

-
 

Just as in the classic case, Klein, Majer, and Rafiee Rad (2020) define non-
standard Bayesian updating as special case of non-standard Jeffrey updating 
where the probability of j  is set to 1. In this case, the formula of Definition 
9 simplifies to the same formula as in the classical case. 
Definition 10 Let :p    be a non-standard probability function and let 
j Î   with ( ) > 0P j . Then the positive non-standard Bayesian update on 
j  (corresponding to the information that j  is true) is the function ( | )P y j :  

( )
( | ) = for .

( )

P
P

P

y j
y j j

j


Î   

With this construction, Jeffery conditioning for non-standard probabilities 
and its special case of non-standard Bayesian conditioning, follow the exact 
same rationale as in the classic case. In this sense the non-standard Jeffery 
and non-standard Bayesian conditionings remain fully faithful to the classi-
cal intuition. It follows immediately, that ( | )P y j  amounts to classic Bayes 
conditioning whenever the prior non-standard belief function P  satisfies 
Kolmogorov’s axioms. 

Moreover, Bayes Theorem, central to Bayesian inference and Bayesian 
learning, continues to hold for positive non-standard Bayesian updates:  
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Lemma 2 Let ,j y  be such that ( ) > 0P j . Then  

( )
( | ) = ( | )

( )

P
P P

P

y
y j j y

j
⋅  

Notably, however, non-standard Bayes conditioning is less expressive 
than classic conditioning in the following sense. Within a classic setting, 
learning some j  to be false, i.e. setting its probability to 0 , is the same as 
learning the probability of j  to be 1. Hence, no separate mechanism for 
learning about the falsity of some j  is needed. This ceases to hold in the 
non-standard setting. There, the propositions that ( ) = 0P j  and that 

( ) = 1P j  are mutually independent. Hence learning that j  is false cannot 
be reduced to learning about the truth of j  and a separate rule is needed 
for learning about the falsity of propositions.7 

Also for Dempster-Shafter belief functions, several updating rules have 
been proposed.8 The main two proposals, which we shall consider here, are 
due to Dempster (best illustrated in SHAFER 1976), and to Fagin and Halpern 
(1990). Crucially, both are generalizations of Bayesian conditioning in that 
they correspond to Bayes updating when the underlying belief function is a 
classical probability measure. The two rules are, however, known to diverge 
in general Fagin and Halpern (1990). To be more precise, Dempster (1976) 
defines conditioning of a belief function bel  by  

bel( ) bel( )
bel ( | ) := .

1 bel( )D
j y y

j y
y

  - 
- 

 

The second strategy, proposed in Fagin and Halpern (1990) is originally 
motivated semantically. Its underlying idea is to represent a Dempster-
Shafer belief function as the lower limit of a family of belief functions - and 
update each of these belief functions separately. This rule, however, can be 
identified in a purely syntactic manner as shown below. For more details see 
Fagin and Halpern (1990).  

bel( )
bel ( | ) := .

bel( ) (1 bel( ))FH
j y

j y
j y j y


 + -  

 

                        
7 This rule is discussed in Klein, Majer, and Rafiee Rad (2020), alongside with further rules 

for updating on conflict or uncertainty. 
8 We should emphasize that all rules discussed here are proposed as  definitions of updating 

policies. Building on these one may construct measures of confirmation that generalize the va-
rious Bayesian confirmation measures (HARTMANN and SPRENGER 2019) to nonstandard settings. 
We leave this for future work. 
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In what follows, we use the map i  of the previous section to compare the 
three updating rules. While bel ( | )D j y  and bel ( | )FH j y  are known to dis-
agree in general, we can ask whether they agree on ( )i   for a normal 
canonical model  . There, we can also ask whether either of these agree 
with the corresponding conditional function ( | )P j y  derived from  , at 
least when j  and y  are both conjunctions of literals (and hence Theorem 3 
applies). 

In fact, given that ( | )P j y  is defined by a straightforward generaliza-
tion of Bayes conditioning to non-standard probabilities, one may arguably 
use the question of whether it yields the same values as bel ( | )D j y  or 
bel ( | )FH j y  in ( )i   to assess the adequacy of the latter two, at least when 
j  and y  are as in Theorem 3. The answer, however, is negative. The three 
conditional probabilities (resp. beliefs) ( | )P j y  (in  ) and bel ( | )D j y , 
bel ( | )FH j y  (in ( )i   may already come apart in simple cases where   is 
a normal canonical model and ,j y  are atomic. 

Example. Let At = { , }p q  and consider the normal canonical model 
= (Lit), ,v v m+ -á ñ   where m  is defined by  

1
iff { , , , , , , , }

( ) = 8
0 else.

x p p q q p q p q p q p q
xm

ìïï Î          ïíïïïî

 

Then *( ) = (Val, ( ))i i   is defined through the weight function  

 *( ) : ({ , , , }) [0;1]p q p q p q p qi            

given by  

*

1
iff {{ },{ },{ },{ },{ , },

8
( )( ) =  { , },{ , },{ , }}

0 else.

A p q p q p q p q p q p q

A p q p q p q p q p q p qi
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  

With this, we calculate ( | )P p q  on   and bel ( | )D p q , bel ( | )FG p q  on 
( )i  . We start with ( | )P p q . Taking into account that the truth sets of p q  

and q  in   are {{ , }}p q  and {{ , },{ , },{ }}p q p q q  respectively and that each of 

these states receives the same weight of 1

8
, we obtain that  
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( ) 1
( | ) = =

( ) 3

P p q
P p q

P q

  

For the two conditional belief functions we move to ( )i  . First, we 
calculate bel ( | )D p q . By definition,  

{ { , , }}

5
bel( ) = ( ) =

8A p q p q p q

p q w A
Í    

  å  

{ { , }}

3
bel( ) = ( ) =

8A p q p q

q w A
Í   

 å  

Hence  
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Lastly, for bel ( | )FH p q  we recall that 
{ { }}

1
bel( ) = ( ) =

8A p q
p q w A

Í 
 å  and 

thus  
1

bel( ) 18bel ( | ) := = = .
bel( ) (1 bel( )) 1 5 4

1
8 8

FH
p q

p q
p q p q


 + -  
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Hence, the three updating rules differ on the conditional probability (resp. 
belief) in p  after learning q . 

As pointed out above the conditionalization of non-standard probabilities 
( | )P p q  directly imports the intuition behind classical conditionalization to 

the non-standard setting. With this perspective the disagreement between 
( | )P p q  and the conditionalization proposed by Dempster or Fagin and 

Halpern can arguably be taken to indicate that either )i  the map ( )i   is too 
weak to preserve conditioning, even though ( ) = bel( ), ( ) = bel( )P p p P q q  and 

( ) = bel( )P p q p q   or )ii , that belD  and belFH  operate on intuitions that 
are different from those of classical conditionalization, and in this sense, 
arguably deviate from the spirit of Bayes update. 

4. CONCLUSION 

We studied and compared two frameworks for quantitative uncertain 
reasoning in situations where the available information may be inconsistent 
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and incomplete. The first of these is based on a non-standard probability 
theory that assigns a system of weights satsifying weaker axioms than those 
of Kolmogorov. This non-standard probability, in term, is built on the para-
consistent Belnap-Dunn logic, a well studied logic for reasoning about im-
perfect information. Moving to BD as underlying system generalises the 
classical approach in two direction. First, it allows for the underlying infor-
mation to be incomplete or even inconsistent, thus relaxing the assumption 
of information completeness. Second, it permits to draw conclusions from 
imperfect bodies of information by using an entailment system that does not 
validate explosion and where classic tautologies such as f f   cease to be 
logical validities. Both these generalisations are crucial for reasoning with 
and about uncertain and possibly faulty information. In situations of infor-
mational scarcity, for instance agents will likely not receive sufficient infor-
mation for or against some proposition to even forme a reliable classical 
likelihood judgment. Likewise, when evidence is gathered from various 
sources, it may plausibly contain conflicting or contradictory information. 
As Belnap-Dunn logic has been developed to address both aspects, it seems 
suitable as underlying logic for uncertain reasoning in quantitative scenarios. 
In fact, probabilistic extensions of Belnap Dunn logic have recently been 
studied in detail by Childers, Majer, and Milne (2019) and Klein, Dominik, 
Majer, Rafiee Rad (2020). 

Within the literature on uncertain reasoning, however, generalizations of 
BD logic are neither the only nor the first approaches towards representing 
uncertainty in quantitative contexts. One of the most prominent of approa-
ches in this literature arguably is Dempster-Shafer theory, defining evidence 
based Dempster-Shafer belief functions. The main objective of this paper 
was to compare non-standard probability theory and Dempster-Shafer belief 
functions in their representation of uncertain reasoning 

A first distinction between the two frameworks suggested itself rather im-
mediately. While the probabilistic extension of BD logic allows for handling 
both inconsistent and incomplete information, Dempster-Shafer belief func-
tions can only deal with the latter imperfection. In particular, Dempster-
Shafer theory can neither assign non-zero belief to a classic contradiction, 
nor have belief values for two contradictory statements that add up to more 
than 1. On the face of it, this already suggest that the non-standard prob-
ability setting may be more general. As we have shown, however, this is not 
exactly correct. While the non-standard probability framework fairs better in 
dealing with inconsistencies, Dempster-Shafer belief functions allow for im-
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precise evidence or local gluts where bel( ) bel( ) < bel( )A B A B+  , which are 
ruled out for non-standard probabilities. 

Thus, none of these frameworks is more general than the other. And 
indeed, we have shown the two frameworks to be orthogonal in the types of 
imperfections they can represent. More specifically, the only quantitative be-
lief (resp. probability) ascriptions that are judged admissible by both Demp-
ster-Shafer theory and DB-based non-standard probability are classic prob-
ability functions — which are devoid of any of the imperfections discussed. 

As next step we then investigated how existing learning or updating 
mechanisms in both framework compare. That is, upon starting from the 
same point in different frameworks, we asked whether or not the respective 
conditioning rules agree. To be more precise let ( , )m¢S  be a Demspter 
Shafer model with the induced belief function bel , and ( , , , )v v m+ -S  a non-
standard probability model with the induced non-standard probability p , and 

, Lf y Î  such that ,( ) = bel( )P f f  ( ) = bel( )P y y  and .( ) = bel( )P f y f y   
Our question, then, was whether conditionalization of non-standard prob-
ability agrees with either of the two conditionalization policies proposed for 
Dempster-Shafer belief functions. As we have shown this already fails in 
very simple cases. 

We take this as a hint, that the updating rules must differ substantially in 
their underlying assumptions, even though they all boil down to Bayes’ up-
dating when applied to classic probability assignments. Moreover, given that 
conditionalization for non-standard probabilities is defined in exactly the 
same way as for classic probability theory, it can arguably be seen as a natu-
ral generalization of the classical Bayesian intuitions to non-classical set-
tings. Accordingly, if we take agreement with non-standard conditionaliza-
tion as a measure of faithfulness to the classical Bayesian intuitions, the fact 
that both DS conditioning rules behave differently might suggest that they 
are, in some sense, significantly different to classical conditionalization. 
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NON-CLASSICAL PROBABILITIES FOR DECISION 
MAKING IN SITUATIONS OF UNCERTAINTY 

S u m m a r y  

Analyzing situations where information is partial, incomplete or contradictory has created a 
demand for quantitative belief measures that are weaker than classic probability theory. In this 
paper, we compare two frameworks that have been proposed for this task, Dempster-Shafer 
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theory and non-standard probability theory based on Belnap-Dunn logic. We show the two 
frameworks to assume orthogonal perspectives on informational shortcomings, but also 
provide a partial correspondence result. Lastly, we also compare various dynamical rules of the 
two frameworks, all seen as generalizations of classic Bayes’ conditiong. 

 
Keywords: reasoning under uncertinty; non-classcal probability; Dempster-Shafer theory; 

Belnap-Dunn logic. 
 

 
  

NIEKLASYCZNE PRAWDOPODOBIEŃSTWA NA POTRZEBY PODEJMOWANIA 
DECYZJI W SYTUACJACH NIEPEWNOŚCI 

S u m m a r y  

Analiza sytuacji, w których informacja jest częściowa, niepełna bądź niespójna wskazuje na 
potrzebę zbudowania jakościowych miar siły przekonań odmiennych niż te, które są oferowane 
przez klasyczną teorię prawdopodobieństwa. W niniejszej pracy porównujemy dwa ujęcia 
zaproponowane dla realizacji tej potrzeby: teorię Dempstera-Shafera i niestandardową teorię 
prawdopodobieństwa nabudowaną na logice Belnapa-Dunna. Pokazujemy, że te dwa formalizmy 
przyjmują ortogonalne perspektywy postrzegania niedostatków informacyjnych, a jednocześnie 
dostarczają rezultatów częściowo ze sobą korespondujących. Na koniec porównujemy różne 
dynamiczne reguły z obu formalizmów traktując je wszystkie jako uogólnienie warunkowania 
Bayesowskiego. 
 
Słowa kluczowe: rozumowania w sytuacji niepewności; nieklasyczne prawdopodobieństwo; teo-

ria Dempstera-Shafera; logika Belnapa-Dunna. 
 
 
 
 


