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A CERTAIN SOLUTION TO FITCH PARADOX 

1.  THE FITCH PARADOX – OVERVIEW 

Fitch paradox or Fitch-Church paradox, as it may also be called (see SA-
LERNO 2009), is often considered as an argument against anti-realism. Accept-
ing that every truth is knowable, as anti-realists do, leads to a paradoxical 
conclusion that there are no unknown truths, or equivalently, that every truth 
is in fact known. Yet, it is not ‘the nail in the coffin’ type of an argument, as 
series of solution proposals may suggest. In fact, there is some room to try to 
overcome the challenge. The main responses to the paradox based on either 
restricting the knowability principle: VAN BENTHEM 2004 and 2009; DUMMETT, 
2001; PALCZEWSKI 2007; TENNANT 1997 and 2009; or changing the logical 
base: ARTEMOV and PROTOPOPESCU 2013; BEAL 2000 and 2009; DEVIDI and 
SOLOMON 2001; KUBYSHKINA and ZAITSEV 2016; MAFFEZIOLI, NAIBO, and NEGRI 
2013; PRIEST 2009; PROIETTI 2012; WANSING 2002; WILLIAMSON 1982 and 1992 
— more on different approaches, see BROGAARD and SALERNO 2013. 

First, we specify the language for the paradox. We have the set of pro-
positional letters ,0 1= { , ,...}Var p p classical connectives , , , ,    «  and set of 
modal operators ,, ,Kà  where the first two are alethic operators of 
possibility and necessity and the third is epistemic operator of knowledge. 
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The resulting language will be called .  The set of formulas is built in 
a standard way. We will call it FOR( ).  Now the paradox is derivable in any 
logic that contains as theorems: 

 
 all tautologies of Classical Propositional Logic, shortly: ,CPL   
 K  distribution over conjunction: ( )K K Kj y j y    ,( )KDis   
 Diamond-Box interdefinability: j jà «    ,( )DB   
 Knowledge Factuality: Kj j  ,( )KF   
 Knowability Principle: Kj j à  ( ).KP   
And rules: 

 ( )MP  
,j y j

y


  

 ( )G  .
j
j

  

The Hilbert style axiomatic system in which only axioms are all tauto-
logies of ,CPL  ,( )KDis  ,( )DB  ,( )KF  ( )KP  and rules are exactly ( )MP  and 
( )G  will be called KFP  – the kernel of Fitch paradox. The logic that is 
obtained within system KFP  is the logic in which the paradox occurs. 

 
Definition 1.1 (KFP-Proof). The KFP -proof of the formula j  is the se-
quence 1,..., ny y , where =ny j , and for each {1,..., }i nÎ , iy  fulfils at least 
one of the following:  
 iy  is an axiom of ,KFP   
 there are ,, <j k i  such that ,=j k iy y y   
 there is <j i , such that =i jy y ,  

We will write KFP j  whenever there is a KFP -proof of j .  
 We also define the notion of deducibility:  

Definition 1.2 Let ( )G Í FOR , ( )j Î FOR . j  is deducible from G  (shortly: 

KFP jG  ) iff there are 1,..., ny y Î G  such that KFP 1 ... .ny y j     
 The proof of the paradoxical thesis may have the following form:  
 
 
 



KNOWABILITY AS DE RE MODALITY: A CERTAIN SOLUTION TO FITCH PARADOX 293

Proof.  

(1) ( ) ( )K K K K Kj j j j        ( )KDis   

(2) K K Kj j      ( )KF   

(3) ( ) ( )K K K Kj j j j       (1), (2), ,( )MP  CPL   

(4)  ( )K Kj j      CPL   

(5)  ( )K Kj j      (3), (4),( )MP , CPL   

(6)  ( )K Kj j      (5),( )G  

(7)  ( )K Kj jà      (6), ,( )DB ,( )MP  CPL   

(8)  ( ) ( )K K Kj j j j   à      ( )KP   

(9)  ( )Kj j      (7), (8), ,( )MP  CPL   

(10)  Kj j    (9),( ),MP  CPL  

  
As we can see, in the proof we make use of formula Kj j   which is 

often called Moore’s sentence.1 We obtain the ‘unknowability’ of such for-
mula and then use it for a contraposition to finally get the paradoxical con-
clusion: Kj j  which can be read in the following manner: if a sentence is 
true, then it is known. 

We need to make some comments here. First of all, we made the stipula-
tion that we need all formulas that are CPL  tautologies in order for the para-
dox to occur. This is not true because we need only those tautologies that 
appear in the derivation itself. In this sense, KFP  is not the minimal logic 
for the paradox. This idealisation is useful however, because we want our 
logic to be easy for semantical analysis. Having this in mind, we let KFP  
contain all CPL . Secondly, the lack of K  axiom and neccesitation rule for 
knowledge operator determines that our logic is not a normal modal logic. 
What is more, we do not need the equivalence in Diamond-Box inter-
definability — implication is enough. However, if we wish to have some 
semantics behind the logic, it would be easier to extend the logic into the 
normal modal logic, since the semantics for those logics are best recognized. 
If we would like to obtain minimal normal modal logic for the paradox to 
                        

1 We claim that it is incorrect, since ‘Moore’s sentence’ means asserting both p  and Kp — 
both assertions need to be made by one agent. Our opinion is that in the case of Fitch paradox, 
such a formula is stated from meta-level (for example by some objective observer about someone 
else’s knowledge) and hence it is not paradoxical yet. 
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occur, we would have to add ( ) ( )j y j y      as an axiom, substitute 

( )KDis  for ( ) ( )K K Kj y j y    and add the rule 
K
j
j

 to system KFP 2. 

The second two modifications seem to be the most problematic since adding 
K axiom and neccesitation rule for knowledge results in so the called logical 
omniscience. It makes the whole setting highly idealised, but this is the price 
to pay if we wish to have simple and elegant semantics behind our logic. 

2.  DE RE INTERPRETATION OF KNOWABILITY 

Knowability Principle ( )KP  in the standard explication of the paradox 
(see FITCH 2009) is formalised by the composition of two modalities—
possibility à  and knowledge :K  

Kj j à  

We claim that what is problematic in Fitch Paradox is representing know-
ability as a composition of alethic operator of possibility and epistemic 
knowledge operator. It is at heart in the de dicto manner because the sen-
tence Kpà  says that it is possible that agent knows that p . In possible world 
semantics it refers us to different accessible worlds similar to our world, 
from which at least one verifies that Kp . Meanwhile, the knowability prin-
ciple says that the truth of the sentence p  is enough for an agent to be able 
to know it in the world which is his actual world even if he is actually igno-
rant about .p  Hence, we think that knowability principle should be inter-
preted as the one saying that truth of a sentence implies that an agent can 
know it in the initial world. 

Also literally the sentence Kpà  says that the sentence Kp  is possible. 
However, it is not the sentence Kp  which is supposed to be possible, but an 
agent’s knowledge about .p  Let us look at the differences which are more 
apparent in the examples: 

(a) It is possible that John knows that Toruń is in Poland. 
(b) John may know that Toruń is in Poland. 

In the case (a) we claim that a sentence is possible, whilst in case (b) we 
claim that a propositional attitude of knowledge is possible. It is a signi-
ficant difference. Our distinction looks like, and in fact is, the distinction 
                        

2 This approach is very much in the spirit of the one by Fischer (see FISCHER 2013, 64-76) 
who’s motivation is — just as in our case — to analyse the paradox semantically. 
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between de dicto and de re modalities. We claim that knowability principle 
is expressed in terms of de re modality. Hence, we do not treat knowability 
as a composition of modalities, but as a single modality.3 We substitute two 
modalities (alethic and epistemic one) by one modality expressing know-
ability. We will use the terms ‘possible knowledge’ and ‘knowability’ as de-
noting the same modality. 

Before we examine the knowability logic, let us shortly mention former 
proposals that can be named “de re strategies in the context of Fitch paradox”. 

Zemach (1987) proposes to read formula K Kp  in the paradoxical argu-
ment as de re, not as de dicto. What does it mean in pracitce? Let P denote 
a given proposition (i.e. P is its name). Assume that John has forgotten what 
Pythagoras Theorem states, but he knows it is true. Then Kp  interpreted as 
de dicto is not true, since John does not know the content of P that is 
expressed by the sentence substituted for p  (i.e. The square of the side op-
posite the right angle is equal to the sum of the squares of the other two 
sides). However, de re interpretation is true, because John knows that pro-
position P is true (i.e. he knows that the proposition named Pythagoras 
Theorem is true). Similarly, in Zemach’s opinion the only possibility of 
interpretation of formula K Kp  is de re. John may know that he does not 
know that p , since he refers to proposition P through its name, not knowing 
the content. This conceptualization does not lead to a paradox.4 

Kvanvig (1995; 2006) makes an emphasis on a different problem in the 
paradoxical argument. In the scope of quantifier in modal contexts it is for-
bidden to substitute non-rigid designators. Shortly speaking, if in conjunc-
tion p Kp   the right component has not a rigid designator, it can not be 
substituted in formula: ( ).p p Kp"  à  The non-rigidness argument is also im-
proved in: BROGAARD and SALERNO 2008; KENNEDY 2014; PROIETTI 2016. 

Kooi (2016) taking into account an ambiguity of reading de re/de dicto, 
proposes a logic in which Knowability Principle is formulated as: 

( )q Kqj l j á à ñ  
where the second occurrence of j  is outside the scope of à . Kooi 
underlines that if Knowability Principle is formulated in a natural language 
(,,If j , then it is possible that j  is known.”), then in fact it states that ,,If ,j  
                        

3 Similar approach can be found in PIETRUSZCZAK and JARMUŻEK 2018, where in the context of 
categorial sentences de re interpretation of modalities also came down to single operators. 

4 This proposal met an objection that it included: “an equivocation in ‘knowing the content’ 
of ,p between knowing what the content is and having knowledge of which it is the content”. 
WILLIAMSON 2000. 
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then j  has the property of being knowable”. This shift also allows to block 
the paradoxical argument. 

In general a strategy de re can be applied to possibility, knowledge or 
knowability operators (complex or sui generis). Moreover, the strategy can 
include different understanding of the distinction between de re/de dicto, 
e.g. either syntactic, semantic, or metaphysical (see NELSON 2019). 

A fundamental difference between former approaches and what is 
proposed here is that we introduce a separate knowability operator, so the 
knowability is treated as sui generis with the de re interpretation. The former 
proposals based on a more complex interpretation of knowability, displaying 
erroneous steps in the paradoxical argument (particularly concerning non-
rigidness), the faulty formulation of Knowability Principle, and consequent-
ly they assume a more complex language. Also our idea is to formalize 
Knowability Pronciple in an alternative way to solve Fitch Paradox, but at 
the same the solution seems much simpler.5 

3. LOGIC OF KNOWABILITY 

Our goal is to present logic with a modified knowability principle and the 
rest of required properties that KFP  possesses and to prove that within this 
logic the paradox does not occur. Precisely, we need to show that the 
formula Kj j  is not derivable from the empty set of premises in our 
logic. To do that, we need some kind of semantic structures and at least 
a soundness theorem (in fact we will show a completeness also). 

A certain remark needs to be made here. As it was mentioned before, the 
kind of logics for which it is the easiest to find adequate semantics are 
normal modal logics. For that reason we will confine our investigation to 
normal modal logic which is in a way stronger than needed. What is more 
problematic, it yields some idealised notion of knowledge — the one in 
which an agent is logically omniscient. Logical omniscience however, is 
a very complex problem itself with no consensus concerning its overcoming 
(consult MEYER 2001, 190–195; MEYER and VAN DER HOEK 1995, 71–89; FAGIN, 
HALPERN, MOSES, and VARDI 1995, 309–347). Since there is no universal frame-
work which would be logically efficient for our purposes, we decide to stick 
to normal modal epistemic logic which unfortunately presupposes logical 
                        

5 Our standpoint is very to close to understanding of knowability as potenitial knowledge, see 
FUHRMANN 2014. 
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 and 

 ' = , ,W R Vá ñM , where ,= { , , , }W w u y z   
,= { , , , , , , , , , , , }R w u w y w w u u y y z zá ñ á ñ á ñ á ñ á ñ á ñ  

( ) = { , , }V p w u y  and for any ,j Î Var if pj ¹ , than ( ) =V j Æ  (Figure 2). 

We can see that in model 'M  agent knows p , while in M , he does not 
know p  any more. In this sense, we can say that the possible world frame-
work models doubt rather than knowledge. Hence, an extension of a number 
of epistemic alternatives resulted in the decrease of agents knowledge. The 
less alternatives – the bigger the knowledge. 

How does it affect our previous remarks on relation between knowledge 
and knowability? If we were to include both modalities in possible-world 
frame, we would like to have two separate binary relations for different 
types of knowledge. The epistemic relation for Kà — lets call it Rà — should 
turn out to be a special subrelation of K ’s — .R  This shall be the case if we 
want possible knowledge to contain those propositions that could be known, 
only if the falsifying worlds were to be removed from a model. This way, the 
possible knowledge would still contain the actual knowledge. For example, 
in our model M  we have ,,w KpM  but we could have ,,w K pàM  if we 
had removed the pair ,w zá ñ  from R  – thus obtaining .Rà  

4.  AXIOMATIZATION 

 We want to obtain normal modal logic for antirealism eg. the one in 
which knowledge factivity and knowability principle holds. We can call it 
a logic of knowability, since – to express possible knowledge – we introduce 
knowability operator Kà  and interpret it as a certain kind of knowledge. 
However, we use abbreviation ARL  from word anti-realism, because it 
incorporates Knowalibity Principle as its thesis. 

Our language ARL  consists of the set of propositional variables =Var
,0 1{ , ,...}p p set of classical connectives { , , , , }    «  and set of unary moda-

lities { , }K Kà . The set of formulas over ARL  is build in the standard induc-
tive way and will be referred to as ARL( ).FOR  

We assume the following axioms and rules:  
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(Taut) All tautologies of CPL  expressed in ARL( )FOR  
( )K   ( ) ( )K K Kj y j y     
( )Kà ( ) ( )K K Kj y j yà à à     
( )KFac Kj j   
( )K pà   Kj jà   

( )MP  
,j y j

y


  

 ( )Knec  
K

j
j

  

Definition 4.1 (ARL-proof). The ARL -proof of formula j  is a sequence 
1,..., ny y , where =ny j , and for each {1,..., }i nÎ , iy  fulfils at least one of 

the following:  
 iy  is an axiom,  
 there are , <j k i , such that =j k iy y y ,  
 there is <j i , such that =i jKy y ,  

If there is an ARL -proof of the formula j , we will denote it by jARL . By 
ARL  logic we understand { : }j jARL . We will write simply ARL  to denote 
the ARL  logic.  

Definition 4.2 Let G  be a set of formulas, j  a formula. We say that j  is de-
ducible from G  in ARL  (symbolically: jG ARL ) iff there are 1,..., ny y Î G  
such that 1 ... .ny y j  ARL   

 Actually, we can prove that the rule for Kà  which is analogous to 
( )Knec  is derivable in our logic.  

Fact 4.3 The rule ( )K necà  
K

j

jà
 is deducible in .ARL   

 Proof. By ( K Pà ) and ( ).MP   

5. SEMANTICS 

 In order to obtain some interpretation for our logic we introduce a notion 
of possible world semantics model. Since we have two kinds of unary moda-
lities in our logic we make use of two binary relations R  and Rà  for standard 
epistemic modality K  and for possible knowledge modality Kà  respectively. 

Our model M  is a quadruple: ,= , , ,W R R Vàá ñM  where ,W ¹ Æ  
,R R W Wà Í ´  and : ( ).V P WVar  The underlying frame is a triple: 
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= , , .W R Ràá ñF  
We assume the following truth-conditions in a model for the formulas in 

respect of their complexity: 

, iff V( ), if is a variablew wj j jÎM   
, iff ,w wj jM M   
, iff , ,w w and wj y j y  M M M  
, iff , ,w w or wj y j y  M M M  
, iff , ,w w or wj y j y  M M M  
, iff , if and only if ,w w wj y j y«M M M    
, iff for all such that ( , ) we have ,w K u W R w u uj jÎM M   
, iff for all such that ( , ) we have , .w K u W R w u uj jà àÎM M   

We say that a formula is true in a model if it is true in all worlds from 
this model. A formula is valid on a frame if it is true in all models built on 
that frame. Finally, we say that a formula is valid in a class of frames if it is 
true in every frame from that class. It is quite obvious that for modal logics 
with two unary operators K  and Kà  we need to consider classes of frames 
with two binary relations. What is more, ( )KFac  determines the class of 
frames with reflexive R . What we are interested in, is the condition that is 
imposed on the frames by the formula ( K Pà ), if any.  

Theorem 5.1  ( )K Pà  determines the frames with the following first-order 
property: , ( ( , ) = )x y W R x y x yà

Î"  .  

Proof.  Let = , , .W R Ràá ñF  
( ) We take such ,x y WÎ  that ( , )R x yà  and assume that x y¹ . Let V  

be such that ( ) = { }V p x . Since , ,V y pá ñF  , we get , ,V x p K pàá ñ F  . As a 
consequence .Kj jàF  

( ) Assume Kj jàF  . Hence, there is = ,Vá ñM F  such that 
,w jM   and , .w K jàM  So there is u WÎ  such that ( , )R w uà  and 
,u pM  . Obviously .w u¹  
The class of frames = , ,W R Ràá ñF  where R  is reflexive and Rà  is as 

above will be called .ARLF  

6. ADEQUACY 

Now we are going to prove adequacy of our Hilbert style system with the 
class of frames .ARLF  We will start from soundness theorem. 
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Theorem 6.1 (Soundness) ARL j  implies .ARLF j   

Proof. By 5.1 ( )K Pà  is valid on .ARLF  The rules preserves validity. The rest 
of the axioms are obviously valid on .ARLF  

Having proven the soundness we can move on to the completeness. To 
prove the theorem, we will start from the definitions of ARL-consistent set 
and ARL-maximal consistent set of formulas.  

Definition 6.2 (Maximal consistent set) Let G  be a set of formulas. 

 G  is ARL-consistent iff ;ARL j jG   otherwise, it is inconsistent;  
 G  is ARL-maximal consistent set ( mcsARL- ) iff it is ARL-consistent 

and its any proper extension is inconsistent. 

Now we are ready to show the well-known Lindenbaum’s lemma.  

Lemma 6.3 (Lindenbaum’s Lemma)  
Any ARL-consistent set of formulas S  can be extended to ARL-maximal 
consistent set ( ARL -mcs).  

Proof. Let 0 1, ,...j j  be a sequence of all formulas. We define the sequence of 
set of formulas in the following way:  

 0 =S S  

 ARLif
otherwise1

{ }, { } ;
=

{ }, .
n n n n

n
n n

j j f f
j+

ì S È S È  ïïS íïS È ïî


 

 
0

= .n
n

¥
+

³

S S  

Now we need to proof that +S  is indeed an extension of S  and an 
ARL .mcs-  Obviously +S Í S , so +S  is an extension of S . For the second 
part we need to show that 1) f f+S  ARL  and 2) any proper extension of 

+S  is ARL -inconsistent. For 1) assume f j+S  ARL . Than, there are 
1,..., ns s +Î S  such that 1 ... ns s j j    ARL . It means that there is kS  

such that for all ,{1,..., }i nÎ  i ks Î S . Hence kS  is inconsistent, but this is 
impossible from the above sequence construction. Contradiction, hence +S  
is ARL -consistent. For 2) assume there is a proper extension G  of +S  and 

ARL f fG   . There must be some formula y  such that y Î G  and 
.y +Ï S  y  must appear somewhere in the sequence, so there is n Î   such 

that = .ny j  By the construction: y +Î S  or .y + Î S  If ,y +Î S  than G  is 



TOMASZ JARMUŻEK, KRZYSZTOF KRAWCZYK, & RAFAŁ PALCZEWSKI  302

not the proper extension of .+S  If ,y + Î S  than G  is ARL -inconsistent. 
Either way it contradicts the assumptions.        

We can state some facts concerning maximally consistent sets that will 
turn out useful in later investigations:  

Fact 6.4  The following hold for any ARL mcs-  :+S  

 ,j y +Î S  iff j y + Î S   
 if j +Î S  and j yARL , than .y +Î S  

Both facts can be easily proven from the construnction of .ARL mcs-  
Here, we are ready to define the canonical model for our logic, which is 

a crucial structure for proving completeness.  

Definition 6.5 (Canonical model) Let WL  be the set of all ARL-mcs. 

Let for all ,x y WLÎ :   
 ( , ) ,R x y iff K x implies y for anyj j jL Î Î   
 ( , ) , .R x y iff K x implies y for anyj j jà à

L Î Î   
 

The canonical model for ARL  is = , , ,W R R Và
L L L L Lá ñM , where  

 R W WL L LÍ ´  is the K -accessibility relation,  
 R W Wà

L L LÍ ´  is the Kà -accessibility relation,  
 VL : ( )WL Var  is a valuation such that ( )x V jLÎ  iff xj Î , for any 

.j Î Var  

Lemma 6.6 (Existence lemma) For all x WLÎ :  

( )K   If K xj Ï , than there is y WLÎ  such that ( , )R x yL  and ,yj Ï  
( )Kà  If K xjà Ï , than there is y WLÎ  such that ( , )R x yà

L  and .yj Ï  

Proof. We prove the lemma only for ( K ) since the case for ( Kà ) is ana-
logous. 

Let ,x WLÎ j  be arbitrary. Assume .K xj Ï  First, we show that { }j È  
{ : } .ARLK xy y f fÎ   Assume otherwise: 
{ } { : } .ARLK xj y y f f È Î    From CPL  we get 1 ... ny y j  ARL , 
where for each ,{1,..., }i nÎ { : }.i K xy y yÎ Î  Since ARL  is a normal 
extension of modal logic K  we get 1 ... .nK K Ky y j  ARL  From 6.4 we 
get .K xj Î  A contradiction, hence { } { : }K xj y y È Î  is ARL consistent-
. The set we denote by .S  

By (6.3) S  can be extended to .ARL mcs-  Such extension will be called 
.+S  By definition (6.4) W+

LS Î  and by (6.5) ( , ).R x +
L S  Moreover, 
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,j + Î S  so by (6.3) .j +Ï S  Hence, +S  is our .y  

Lemma 6.7  (Truth lemma) xj Î  iff ,x jLM  , for all .x WLÎ   

Proof. By induction on the complexity of .j  We will omit the cases for 
boolean connectives and focus only on case with ,K since the proof for Kà  
is analogous. Base case from (6.5).  

Inductive step: Let := .Kj y  First assume .K xy Î  Let y WLÎ  be arbi-
trary. Assume ( , ).R x yL  By (6.5) .yy Î  ,y yLM   from inductive hypo-
thesis. Hence , .x KyL M  For the other direction assume .K xy Ï  By (6.6) 
there is y WLÎ  such that ( , )R x yL  and .yy Ï  Let a  be such .y  ,a yLM   
from hypothesis. Hence , .x KyL M  

Now we are in a position to prove the completeness result. First we state 
that ARL j  implies ARLF j  — the succedent means that there are such 

,= , ,W R Ràá ñ ÎF ARLF ,= ,Vá ñM F  w WÎ  that , .w jM  To show that we are 
going to prove two lemmas. 

Lemma 6.8  ARL j  implies that .jL M   

Proof. Assume .ARL j  By CPL  ,{ } ARLj f f    hence by (6.3) we can 
extend { }j  to .ARL mcs-  Let x  be such a .ARL mcs-  By (6.5)  x WLÎ  
and by (6.7) ,,x jL M hence , .x jL M    

Lemma 6.9  = , ,W R Rà
L L L Lá ñ ÎF ARLF .  

Proof. We have to show that RL  is reflexive and Rà
L  meets the condition: 

, ( ( , ) = ).x y W R x y x yà
Î"   Let x WLÎ  be arbitrary. 

Let j  be any formula such that := Kj y  and .xj Î  K xy y Î , hence 
xy Î  by (6.4) which by definition (6.5) means ( , ).R x xL  RL  is reflexive. 

For the second part assume y  is such that ( , )R x yà
L  and ,x y¹  which 

means that there is j  such that xj Î  and .yj Ï  Let y  be such .j  
K xy yà Î  so K xyà Î  by (6.4) yy Î  from definition (6.5). Contradic-

tion, hence =x y  as required.   

Finally, we can prove the completeness theorem. 

Theorem 6.10 (Completeness) jARLF  implies .jARL   

Proof. By (6.8) and (6.9)we get jARL  implies jARLF , hence if ,jARLF  
than .jARL    
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7. COUNTERMODELS FOR FITCH PARADOX 

 Now we are going to refute the Fitch Paradox in ARL . To show that the 
paradoxical reasoning can not be reproduced in our logic, we will make use 
of completeness theorem and prove that .p KpARL   

Theorem 7.1  Kj jARLF   

Proof. It is sufficient to find ,= , ,W R Ràá ñ ÎF ARLF  = ,Vá ñM F  and w WÎ  
such that , .w p KpM  In order to do that, we build countermodel 

,* * * **= , , ,W R R Vàá ñM  where ,* = { , }W u w  ,* = { , , , , , }R u u w w u wá ñ á ñ á ñ  * = { , ,R u uà á ñ  
, }w wá ñ  and *V  is such that *( ) = { }V p u  and for each ,j Î Var if ,pj ¹ than 

* *( ) = .V Wj Our model has the required properties and falsifies the formula 
p Kp  at the world .u By *V  we have *, .u pM Since *,w pM   and 

*( , )R u w  we get *, .u KpM     

By (7.1)and the soundness we get .p KpARL  It would be interesting to 
come back to the original Fitch’s proof that we presented in the beginning 
and see where is the step in which the derivation would fail in ARL . 
Obviously, it is for example step (6), because we do not have the necessity 
operator in our logic. 

Now let us get back to our intuitions. Obviously: 

 Kp K pàARL  

by ,( )KFac ,( )K Pà and CPL . By completeness: 

 Kp K pàARLF  

 hence, in all our frames .R Rà Í  
What may seem a kind of counter-intuitive is the knowability of senten-

ces that can not be true. For example, the formula ( )K p pà    is satisfiable 
in ARLF . In order to show this, we consider any model based on the frame 
from ARLF  with empty .Rà  

We see few possibilities to overcome this difficulty. One of them is to 
enhance ( )K Pà  to: 

 ( ) .K P Kj jà à¢ «  

In terms of semantics we need the class of frames ,'ARLF  where Rà  is restrict-
ed by the condition: ,, ( ( , ) = )x y W R x y x yà

Î"   so Rà  should be the least refle-
xive relation. This subtlety is only a little part of the story we would like to 
tell in the future, when we examine some of other possible extensions of ARL . 
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8. TABLEAUX APPROACH TO ARL  
 

Now, we shall outline the tableaux approach to our logic. We will be 
governed here by a strategy adopted in paper by Jarmużek (2013) which intro-
duced a formalized tableaux theory for some modal logics. Let us, however, 
disregard the formal concepts in favour of stressing the crucial points which 
determine the completeness of the tableaux approach related to the seman-
tically designated consequence relation. 

For current investigations, we shall need a new language. A language of 
tableaux proofs. As we know, a tableaux proof for a logic determined by 
possible worlds semantics is usually carried out in a set of formulas with 
labels that are natural numbers. We would like to call them indexes. Let   
be the set of natural numbers. A set of tableaux expressions Ex  is a union of 
the following sets: 

 { : , }irj i j Î   
 { : , }ir j i jà Î   
 ARL .( )´ FOR  

In all cases it is possible we will omit the brackets: á , ñ , so for example 
instead of ,,ijá ñ  we will just write ,ij  etc. Let us now explain what the 
particular expressions are intended to encode. Expressions of the form irj  
naturally encode in the tableaux language an accessibility relation R  be-
tween worlds denoted by i  and j . Expressions of the form ir jà  encode in 
the tableaux language an accessibility relation Rà  between worlds denoted 
by i  and j . Surely, expressions ,ij  traditionally encode that a formula j  is 
true at a world denoted by .i  

Now, all tableaux proofs are carried out in language Ex . A tableaux in-
consistent set of expressions (that closes a given branch) is the one com-
prising a pair: 
 ,ij  and ,,ij   

for some ARL( )j Î FOR  and .,i j Î   We say that a set of tableaux ex-
pressions is tableaux consistent iff it is not a tableaux inconsistent set. 

We propose a set of tableaux rules for our logic. For the formulas with 
main classical connectives: , , , , ,« we shall assume the standard 
tableaux rules. We do not need to list or elaborate them as they have been 
thoroughly examined in many papers (see GORÉ 1999; JARMUŻEK 2013). 

The modality of knowledge K  behaves like a modality in alethic modal 
logic T. So for K  we assume the following standard tableaux rules: 
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 ,K ij    ,K ij

(R )K  irj    (R )K  irj  

 , jj    , jj

 
where rule ( R K ) is obviously limited by clause that index j  is new on the 
branch. Moreover, since accessibility relation R  in a model is assumed to be 
reflexive, we add also a rule: 

ref(R )  
iri

where i  previously appeared on the branch. 
The modality of possible knowledge Kà  behaves at the basic level like 

a modality in alethic modal logic K, but with some later modification. So for 
Kà  we assume the following two standard tableaux rules: 

 
 ,K ijà     ,K ijà  

(R )
Kà  ir jà    (R )

Kà
ir jà  

 , jj    , jj
 

where rule ( R
Kà

) is obviously limited by clause that index j  is new on the 
branch. 

Additionally, since Rà  is supposed to satisfy in a model condition: 
,x y WÎ" ( ( , ) = )R x y x yà  , so we add a new rule:  

 ir jà

(R )ARL , jj  
 ,ij

The rule (R )ARL  is the only one among the listed ones that must be 
extensively inspected in the context of soundness and completeness of the 
proposed here tableaux approach to ARL . 

The set of all mentioned rules will be denoted as R. 
For the simplification, let us call the expressions in a tableaux rule nume-

rator input, while those in denominator output. Some rules, e.g. among those 
for the classical connectives may have more than one output, since they 
generate more than only one branch. 
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Let us now introduce two concepts which are important for the tableaux 
issues. 

Definition 8.1 (Set of indexes). Let X Í Ex . By function : ( )Ind X  P  we 
mean a mapping satisfying conditions: 

 if = { }X irj , then ( ) = { , }X i jInd , for all ,i j Î   
 if = { }X ir jà , then ( ) = { , }X i jInd , for all ,i j Î   
 if = { , }X ijá ñ , then ( ) = { }X iInd , for all i Î   and ( )j Î FOR  
 ( ) = { ( ) : }.X y y XÎInd Ind  

Any function Ind  collects indexes contained in expressions from a given 
subset of .Ex   

Now, we can extend in a certain sense the concept of truth in a model 
from the formulas to all expressions from Ex. 

Definition 8.2 (Model suitable to a set of expressions).  Let = , , ,W R R Vàá ñM  
be a model and X Í Ex . Model M  is suitable to X  iff there exists a function 
f  from the set of indexes contained in expressions from X  to ,W  i.e. 

,: ( )f X WInd  such that, for any ( )j Î FOR  and :,i j Î    

 if irj XÎ , then ( ( ), ( ))R f i f j   
 if ir j Xà Î , then ( ( ), ( ))R f i f jà   
 if ,i Xjá ñ Î , then , ( ) .f i jM  

Making use of the provided concept of a suitable model M  and conduct-
ing an inspection of the provided tableaux rules, we are able to demonstrate 
that if a model is suitable for set of expressions X Í Ex , then an application 
of a selected tableaux rule extends set X  with a new expression or expres-
sions for which model M  is still suitable. 

Let us now phrase a proposition. 

Lemma 8.3 (Rules sound to model).  Let:   

 X Í Ex   
 = , , ,W R R Vàá ñM  be a model suitable to .X   

If any tableaux rule from R  has been applied to set X , then M  is suitable to 
union of X  and at least one output obtained through application of this rule.  

Proof. Assume all hypothesis. Let : ( )f X WInd  be a function as in defi-
nition (8.2). For cases of applications of most rules from set R the proof is 
standard (see GORÉ 1999; JARMUŻEK 2013). 
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A new case is the case of rule (R ).ARL  If it has been applied to ,X  then 
,, ,ir j j Xjà á ñ Î  and by assumption about ,f  ( ( ), ( ))R f i f jà  and , ( )f j jM  . 

However, since ( ( ), ( )),R f i f jà  so ( ) = ( )f i f j  (by condition for the frames from 
ARLF ), and therefore , ( ) ,f i jM  which means that M  is suitable to 

,{ , }X ijÈ á ñ  by definition (8.3).   

The proof of completeness of our tableaux methods in relation to the 
presented semantics still requires a converse proposition in a sense. Let us 
introduce a concept of a model produced by a set of expressions. 

Definition 8.4 (Model generated by branch). Let X ExÍ . Model , , ,W R R Vàá ñ  is 
generated by X  iff   

 = { : Ind( )} \ { : }iW i i X j ir j Xà
ÎÎ $ Î   

 ( , )R i j  iff irj XÎ , for all ,i j WÎ  
 ( , )R i kà  iff j$  [ ]ir j Xà Î  and =i k , for all ,i k WÎ  
 for every Varj Î , i WÎ : ( )i V jÎ  iff , .i Xjá ñ Î  

Now, if we take a set of expressions X Í Ex  such that: 
 it is closed under all rules from R — for all expressions from X  to 

which one of the rules is applicable, there exists exactly one output in X   
 X  is a tableaux consistent set of expressions,  

then there is a model M  generated by set X . Therefore, we have one more 
proposition. 

We have a fact that generating from closed and consistent sets of 
expressions gives models that are underlined by frames from .ARLF  

Fact 8.5  Let X Í Ex  be a closed under tableaux rules R and tableaux con-
sistent set of expressions. Let = , , ,W R R Vàá ñM  be the model generated by 
X . Then , , .W R Ràá ñ Î ARLF  

Proof. To obtain the thesis we must show that: 

1. ( , )x WR x xÎ"  

2. , ( ( , ) = ).x y W R x y x yà
Î"   

For 1. we observe that since X  is closed under tableaux rules R and is a tab-
leaux consistent set, so by rule ref(R ) , for all ( )i XÎ Ind , we have iri XÎ . 
Hence, by definition of R  and W  in (8.4), ( , )x WR x xÎ" . 

For 2. we assume that ( , )R a bà , for ,a b WÎ . Then by definition of Rà  in 
(8.4), = .a b    
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Lemma 8.6 (Model sound to rules).  Let X Í Ex  be a tableaux consistent set. 
If X  is closed under tableaux rules R, then there is model = , , ,W R R Vàá ñM  
such that for any ARL, ( ( ) )i X Wjá ñ Î Ç ´FOR , , .i jM  

Proof. We conduct a proof by induction on the complexity of expressions con-
tained in X . We consider only the expressions that include indexes from .W  

The initial step is for letters and negated letters. Let ,, ( )i X Var Wjá ñ Î Ç ´  
for some i Î  . Then by definition of V  in (8.4), and so , .i jM  

Let ARL, ( ( ) )i X Wjá ñ Î Ç ´FOR , for some i Î  , where j Î Var . Since 
X  is tableau consistent, so .,i Xjá ñ Î  Then by definition of V  in (8.4), 

( )i V jÎ  , and so , .i jM  In consequence , .i jM  
The inductive step. We have to assume that for any expression 

,i Xjá ñ Î Ç  ,ARL( ( ) )W´FOR  where j  is of the complexity ,n for some 
n Î  , , .i jM  We will consider a formula y  of the complexity 1.n +  

Again the cases for classical connectives:  ,  ,  ,  , «  are obvious 
and thoroughly examined. We concentrate on the modal as well as on new 
cases, so we also check some cases for negation: K  and .Kà  

Let ,ARL:= , ( ( ) )K i X Wy fá ñ Î Ç ´FOR  or some .i Î  Since X  is closed 
under ref(R ) , so there is at least one j Î   such that ,irj XÎ  and by (R )K  an 

, j Xfá ñ Î . If ,j WÎ  then by definition of R  in (8.4), iRj , and by induction 
hypothesis , j fM  . So , .i KfM  

Let ,ARL:= , ( ( ) )K i X Wy fá ñ Î Ç ´FOR  for some i Î  . Since X  is 
closed under ,(R )K  so for some j Î  , irj XÎ  and ,, j Xfá ñ Î  since j  is 
new in the set, so .j WÎ  By definition of R  in (8.4), iRj , and by induction 
hypothesis, , .j fM  So , .i KfM  

Let ,ARL:= , ( ( ) )K i X Wy fàá ñ Î Ç ´FOR  for some i Î  . If there is no 
,ir j Xà Î  then for no ,k Î   ,iR kà  by definition of Rà  in  (8.4), and so 

, .i K fàM  Let us assume for some j Î  , there is .ir j Xà Î  Since X  is 
closed under rule ,(R )

Kà  so for any ,ir k Xà Î  , .k Xfá ñ Î  Then by definition 
of Rà  in  (8.4), we have .iR ià  Moreover, since X  is closed under rule 
(R )ARL , so also .,i Xfá ñ Î . But by induction hypothesis , .i fM   Again by 
definition of Rà  in  (8.4), , .i K fàM  

Let ,ARL, ( ( ) )K i X Wfàá ñ Î Ç ´FOR  for some .i Î   Since X  is closed 
under ,(R )

Kà
 so for some ,j Î   ir j Xà Î  and ., j Xfá ñ Î  Since X  is 

closed under ,(R )ARL  so .,i Xfá ñ Î  However, .i WÎ  So, by induction 
hypothesis, , i fM  . But, because ,ir j Xà Î  so by definition of R  in  
(8.4), .( , )R i ià  Hence, .,i KfM    
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Finally, we have a theorem on the completeness of tableaux and the 
proposed semantics for logic ARL . 

Theorem 8.7 (Completeness theorem). Let ARL ARL( ( )) ( )Í ´  P FOR FOR  be 
the consequence relation defined by the class of models determined by 
frames ARLF . Then for any ,ARL( )X Í FOR  ARL( )j Î FOR  the following 
facts are equivalent:   

1.  X j   
2.  there is a finite subset Z XÍ  and index i Î   such that each closure 

of set { , : { }}i Zy y já ñ Î È   under set of tableaux rules R is a tableaux 
inconsistent set of expressions.  

Proof. Let us adopt the assumptions. In the theorem proof, we make use of 
the prior propositions. For implication (1) (2)  lemma (8.6) is sufficient. 
In turn, for implication (2) (1)  lemma (8.6) is sufficient.    

9. CONCLUSION 

In the paper we proposed a new approach to Fitch Paradox. Our idea was 
to use single operator of knowability Kà  instead of composition of à  and 
K  in the formulation of Knowability Principle. We treat Kà  as de re ope-
rator, since its interpretation is that Somebody may know that in contrast to It 
is possible that somebody knows that. We constructed for it a logic in which 
Fitch paradox disappeared. The logic can be treated as some minimal anti-
realistic logic, since Knowability Principle is its thesis, while the trivializa-
tion of knowledge ( Kf f ) is not. Of course, other anti-realistic thesis 
can be added (as K f fà  ), if we want to have a stronger logic. The frames 
and tableau methods we examined are ready for further development and 
philosophical discussions. 
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KNOWABILITY AS DE RE MODALITY: 
A CERTAIN SOLUTION TO FITCH PARADOX 

S u m m a r y  

In the paper, we try to find a new, intuitive solution to the Fitch paradox. We claim that 
traditional expression of Knowability Principle ( )p Kp à  is based on erroneous understand-
ing of knowability as de dicto modality. Instead, we propose to understand knowability as de re 
modality. In the paper we present the minimal logic of knowability in which Knowability 
Principle is valid, but Fitch Paradox does not hold anymore. We characterize the logic 
semantically as well as by an axiomatic and tableaux procedure approach. 

 
Keywords: anti-realism; de dicto modality; de re modality; epistemic logic; Fitch Paradox; 

knowability logic; knowability principle; modal logic; tableaux methods. 
  

 
POZNAWALNOŚĆ JAKO MODALNOŚĆ DE RE: 
PEWNE ROZWIĄZANIE PARADOKSU FITCHA 

S u m m a r y  

W artykule staramy się znaleźć nowe, intuicyjne rozwiązanie paradoksu Fitcha. Twierdzimy, 
że tradycyjne wyrażenie zasady poznawalności ( )p Kp à opiera się na błędnym rozumieniu 
poznawalności jako modalności de dicto. Zamiast tego proponujemy rozumieć poznawalność 
jako modalność de re. W artykule przedstawiamy minimalną logikę poznawalności, w której za-
sada poznawalności jest ważna, ale paradoks Fitcha już nie obowiązuje. Logikę charakteryzujemy 
semantycznie, a także poprzez podejście aksjomatyczne i tabelaryczne. 
 
Słowa kluczowe: antyrealizm; modalność de dicto; modalność de re; logika epistemiczna; para-

doks Fitcha; logika poznawalności; zasada poznawalności; logika modalna; metody tablicowe. 
 
 
 
 



 
 


