Is a 100% Renewable Energy Economy Possible in the Light of Wind Silence Occurrences?

  • Jakub Edward Zaleski Towarzystwo Naukowe KUL
Keywords: renewable energy; wind; solar; intermittence; 100% RES; wind silence


This article is focused on analysing the present state of renewable electricity production and consumption coverage in Germany, concentrating on the intermittence of wind and solar energy production and considering the significance of the wind silence phenomenon. The development and promotion of renewable energy is a major goal set out by politicians of which one example is the German plan “Energiewende”.

The author examines wind and solar energy complementarity and attempts assessing the possibility of basing Germanys’ electricity production on renewable energy sources, without significant advancements in technology and changes in consumer behaviour. Using the analysis based on hourly data of consumption and production by source of electricity in Germany in 2016, the research addresses the issues of renewable energy source effectiveness, intermittence and points to the critical matter of periodical unavailability of wind and solar energy.



Akurua, U. B., Onukwubeb, I. E., Okoroc, O. I., Obea E.S. (2017). Towards 100% renewable energy in Nigeria. Renewable and Sustainable Energy Reviews 71,
p. 943–953. doi: 10.1016/j.rser.2016.12.123
Bach, P.F. International time series 2006-2016. Retrieved from: (01.08.2018).
Beaudin, M., Zareipour, H., Schellenberglabe, A., Rosehart, W. (2010) Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development 14, p. 302–314. doi: 10.1016/j.esd.2010.09.007
Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU). (2010). Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply. Retrieved from: (21.08.2018).
Bundesministerium für Wirtschaft und Energie (BMWi). (2016). Renewable Energy Sources in Figures, National and International Development. Retrieved from: (01.08.2018).
Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen. (2017). Monitoring report 2017. Retrieved from: (02.08.2018).
Capellán-Pérez, I., Castrob, C., Artod, I. (2017) Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renewable and Sustainable Energy Reviews 77, p. 760–782. doi: 10.1016/j.rser.2017.03.137
Child, M., Haukkala, T., Breyer, C. (2017) The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050. Sustainability 9(8) 1358. doi: 10.3390/su9081358
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – Energy Roadmap 2050, COM (2011) 885. Retrieved form:
Connolly, D., Lund, H., Mathiesen, B. V. (2016). Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renewable and Sustainable Energy Reviews 60,
p. 1634–1653. doi: 10.1016/j.rser.2016.02.025
Denholm, P., Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 39,
p. 1817–1830. doi: 10.1016/j.enpol.2011.01.019
Garbicz, M. (2015). Niedyspozycyjny charakter energetyki wiatrowej – analiza polskiego przypadku. In: Bartkowiak, R., Wachowiak, P. (Ed.). Nauki ekonomiczne a praktyka gospodarcza: wzajemna zależność. Warsaw, Oficyna wydawnicza Szkoły Głównej Handlowej, p. 73-83.
Graham-Harrison, E. (2009). China says Three Gorges Dam cost $37 billion. Reuters. Retrieved from: (08.08.2018).
Indexmundi. (2014). Average precipitation in depth (mm per year) – Country Ranking. Retrieved from: (09.08.2018).
Jungjohann, A., Morris, C. (2014). The German Coal Conundrum: The status of coal power in Germany’s energy transition. Washington DC, Heinrich Böll Stiftung.
Jurasz, J., Piasecki, A. (2016). Evaluation of the Complementarity of Wind Energy Resources, Solar Radiation and Flowing Water – a Case Study of Piła. Acta Energetica 2/27, p. 98–102. doi: 10.12736/issn.2300-3022.2016208
Krajacic, G., Duic, N., Carvalho, M. (2011). How to achieve a 100% RES electricity supply for Portugal. Applied Energy 88, p. 508-517. doi: 10.1016/j.apenergy.2010.09.006
Messagie, M., Mertens, J., Oliveira, L., Rangaraju, S., Sanfelix, J., Coosemans T.,
Mierlo, J. van, Macharis, C. (2014) The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Applied Energy 134, p. 469–476. doi: 10.1016/j.apenergy.2014.08.071
Poullikkas, A. (2013). A comparative overview of large-scale battery systems for electricity storage. Renewable and Sustainable Energy Reviews 27, p. 778–788. doi: 10.1016/j.rser.2013.07.017
Power Technology. Three Gorges Dam Hydro Electric Power Plant, China. Retrieved from: (06.08.2018).
Sinn, H. W. (2017). Buffering volatility: A study on the limits of Germany’s energy revolution. European Economic Review 99, p. 130–150. doi: 10.1016/j.euroecorev.2017.05.007
Sovacool, B. K., Hirsh, R. F. (2009). Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy 37, p. 1095–1103. doi: 10.1016/j.enpol.2008.10.005
The British Wind Energy Association (BWEA). (2005). Wind Turbine Technology. Retrieved from: (03.08.2018).